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ABSTRACT 
The finite difference time domain (FDTD) method is a powerful method for the direct simulation 
of room acoustics impulse response. One feature of the method is that it allows visual 
inspection of the propagation of the sound field over time, which is particularly useful in the 
study of surface reflection, scattering and diffusion in the time domain. However, such a study 
will require the incorporation of frequency dependent surface boundary conditions in the time 
domain method. This is not straightforward, especially when one considers the implications of 
multiple reflections in a room acoustics simulation. This paper investigates various possibilities 
of implementing frequency dependent boundary conditions in FDTD simulations. This includes 
the direct convolution method, a mass-damper-spring approximation, and the Z-Transform 
method. The implication on accuracy and computation time will be discussed. The paper will 
also demonstrate the use of a filter design approach to represent typical frequency dependent 
absorption coefficients of wall surfaces, and the implementation of this procedure in the FDTD 
simulation of the acoustics of a simple concert hall. 
 
 
1. INTRODUCTION  
The finite-difference time-domain (FDTD) method is a simple numerical method that replaces 
differential equations by finite differences and has been successfully used to predict the 
changes in electric and magnetic fields in Electrodynamics. Since Maloney and Cummings [1] 
presented the parallelism between the fundamental EM equations (Maxwell’s equations) and 
Acoustics (continuity and Euler’s equations), many acousticians are trying to use and develop 
the FDTD for room acoustic prediction.[2-5] In room acoustic simulation, the FDTD equations 
are directly derived from the wave equations. Acoustic phenomenon such as diffraction, 
diffusion and interference effects (such as room modes) are all formulated naturally. FDTD 
requires the whole acoustic field to be discretised into an interconnection of elements, unlike the 
Boundary Element Method. For large spaces, a large number of elements would be needed to 
represent the field accurately, which requires a considerable amount of computational power. 
However, calculating the pressure and velocity at the nodes for each point in time and space 
allows the whole acoustic field to be animated. Propagation of sound waves through the field 
can be shown visually. The visual representation can help easily identify the acoustic flaws in 
the space which would help the user determine ways to improve the performance of the space. 
FDTD allows the current design to be assessed and provides Architects and Architectural 
acousticians with information which may allow them to further improve the design. This makes it 
a potentially very useful technique for designing acoustic spaces. Although the FDTD has many 
advantages, many aspects of the FDTD for room acoustics still need to be developed and 
improved. One of the obstacles is the modelling of frequency dependent boundary conditions. In 
this paper, three different boundary conditions modelling approaches will be investigated and 
discussed.  

2. FINITE DIFFERENCE TIME DOMAIN 

2. 1 FDTD equations 
In room acoustic simulation, FDTD models the sound propagation using a finite difference 
scheme in time and space. Since it is generally better to operate a finite difference scheme on 
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lower order derivatives, the first order Euler and Continuity differential equations are used. 
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where p is the sound pressure, uv is the particle velocity vector. Because of their 
interdependence, the sound pressure and particle velocities need to be calculated alternatively 
in a staggered grid. The 3D FDTD equations can be written as follows. 
 

( ) ( )
( ) ( )[ ]

( ) ( )[ ]

( ) ( )[ ]nkjiznkjiz

nkjiynkjiy

nkjixnkjix

nkjinkji

tzyxutzyxu
z
tc

tzyxutzyxu
y
tc

tzyxutzyxu
x
tc

tzyxptzyxp

,,,,,,

,,,,,,

,,,,,,

,,,,,,

2/12/1
2

0

2/12/1
2

0

2/12/1
2

0

2/12/1

−+

−+

−+

−+

−
Δ
Δ

−

−
Δ
Δ

−

−
Δ
Δ

−

=

ρ

ρ

ρ
     ( Eq. 2) 

( ) ( )
( ) ( )[ ]2/12/11

0

12/12/1

,,,,,,1

,,,,,,

−−+

−++

−
Δ
Δ

−

=

nkjinkji

nkjixnkjix

tzyxptzyxp
x
t

tzyxutzyxu

ρ

 

( ) ( )
( ) ( )[ ]2/12/11

0

12/12/1

,,,,,,1

,,,,,,

−−+

−++

−
Δ
Δ

−

=

nkjinkji

nkjiynkjiy

tzyxptzyxp
y
t

tzyxutzyxu

ρ

      ( Eq. 3) 

( ) ( )
( ) ( )[ ]2/12/11

0

12/12/1

,,,,,,1

,,,,,,

−−+

−++

−
Δ
Δ

−

=

nkjinkji

nkjiznkjiz

tzyxptzyxp
z
t

tzyxutzyxu

ρ

 

2. 3 Courant limit 
When using the FDTD equations it must be ensured that the space step size does not exceed 
the speed of sound for a given time step size. This is referred to as the Courant limit [6]. In a 3D 
situation, waves can propagate horizontally, vertically and diagonally. For a square grid it must 
be ensured that the waves propagating diagonally do not exceed the speed of sound. The 

Courant limit is given by [6]: 
nc
xt Δ

≤Δ , where n is the number of dimensions, and 

zyx Δ=Δ=Δ is assumed. 

2. 4 Implementing sources 
In order to generate sound propagation in the FDTD grid a source needs to be placed into the 

grid. The source signal that was implemented is a Gaussian pulse ( ) ( )2tAetS ⋅−= σ . 

3. MODELLING FREQUENCY DEPENDANT BOUNDARIES 
Since room boundary conditions are generally frequency dependent, it is essential to model 
them correctly in a FDTD grid simulation. Botteldooren [7] demonstrated the use of a mass-
damper-spring system to approximate boundary conditions in a FDTD model. Rienstra [8] 
showed how analytical models of simple boundary such as mass-damper-spring systems or 
Helmholtz resonators can be expressed in the time domain by using a Padé approximation or a 
Z-Transform. These approximations can then be implemented into time domain acoustic 
simulation programs. The Z-Transform was implemented into the FDTD to model acoustic 
impedance by Özyörük and Long earlier in 1996 [9]. Generally there is limited literature in this 
area of FDTD development for room acoustics. The purpose of this paper is to evaluate the 
efficiency and accuracy of different boundary condition modelling methods in FDTD. A simple 
locally reacting mass-damper-spring boundary will be used as an example. Three methods will 
be explored and evaluated:  

1. A mass-damper-spring specific method using numerical differentiation and integration; 
2. Direct convolution of the boundary reflection impulse response; 
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3. Z-Transform based IIR filter. 
 
The methods will be compared to the analytical solution of the mass-damper-spring system in a 
1D simulation, and then applied to a 3D space. In the 3D application, single reflected pulses 
calculated from the 3 boundary modelling methods were compared to observe the most efficient 
form of model that produces least memory, highest accuracy, and efficient calculation time. 

3. 1 The discrete integration-differentiation method 
This equation is derived from the mass-damper-spring equation by applying discrete 
approximations to the differentiation and integration of the velocity in the equation.  
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where bm is the mass per unit area of boundary kgm-2 , bR is the specific acoustic resistance of 

the boundary Nsm-3 , and bk is the bulk modulus of the boundary Nm-3. For this application the 
velocity of the boundary needs to be found from an incident pressure. Discretising the formula 
and approximating the differentiation and integration by finite difference and discret summation, 
the FDTD update equation can be re-arranged to: 
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   ( Eq. 5) 

3. 2 Convolution 
Any boundary reflection can be thought of as a impulse response filter. The incident wave 
interacts with the boundary and a filtered version is reflected back into the space. In DSP, a 
filter can be implemented by convoluting the impulse response of the filter with the input signal. 
This method is expected to be the most robust and should not be limited to low frequency. 
However, convolution is usually a computationally expensive process, especially if a high level 
of accuracy is required. The impulse response can be found by performing an Inverse Fourier 
Transform of the frequency domain transfer function. This impulse is currently non-causal. If this 
impulse response was used to model a reflection from the boundary a second delayed reflection 
would be generated. In order to avoid this second reflection, only the first half of the impulse is 
used. To maintain the same energy in this impulse, the rejected second half is then flipped over 
back and added on to the impulse from sample 2 onwards. The impulse has been truncated to a 
maximum of 200 samples to reduce computation.  

3. 3 Z-plane filter design 
The convolution method discussed above is a Finite Impulse Response Filter. A more efficient 
way to implement a time domain filter is to use an Infinite Impulse Response filter. An IIR filter 
usually requires fewer coefficients to represent the same filter and hence should be less 
computationally expensive. An IIR filter will now be designed based upon the reflection 
coefficient.  
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The mass and stiffness of the boundary determines the resonant frequency
m
k

res =ω . The 

pole and zero locations are found from the roots of the numerator and denominator. Assuming 
that ( ) mcrres 2/0ρω +> , the poles and zeros become: 
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Using a standard Bilinear Transform, the Z-Transformed reflection coefficient becomes: 
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The difference equation of the filter is obtained by rearranging the equation to:   
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The Bilinear Transform compresses a continuous transfer function with a frequency range of ±∞ 
to a discrete transfer function with a frequency range of ±ƒs/2. In order to match the continuous 
frequency to the discrete frequency, the filter has to be pre-warped, 
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replaces resω  in the equations for the zeros and poles. 
For the difference equation expressed by Equation 10, the incident velocity is the input and the 
reflected velocity is the output. It should be noted that the FDTD node contains information 
about both the incident and reflected velocities. For the filter to work properly, the incident 
velocity needs to be extracted and entered into the equation.  
 
4. RESULTS AND DISCUSSION 
 
4. 1 Visual comparison of the 3 methods in 1D FDTD  
The 3 methods were compared to the theoretical model in order to identify their accuracy.  

 
sf  resf  m  r  k  

kHz10  Hz250  
05.0 ρ  c0ρ

2
resmω

 
Figure 1.- Comparison of 3 the methods with the theoretical model 

 
From Fig.1, the error in the Integration-differentiation method increases much faster than the 
other two as frequency increases. This is caused by the additional numerical differentiation and 
integration needed in the method. The results show that this method is limited to systems with a 
resonant frequency less than ƒres = 0.05×ƒs. The convolution method, using 200 samples, 
provides the best results out of the 3 methods. At low frequency the results seem almost 
identical to the theoretical model. It is only when the resonant frequency is increased to around 
¼ƒs that the accuracy is compromised. This is however more likely a limit due to the FDTD time 
and step sizes rather than the convolution itself. The Z-Transform technique also produces 
results very similar to the theoretical response, and the accuracy is generally similar to that of 
the direct convolution method, with good accuracy up to ƒres = 0.2×ƒs. However, it should be 
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noted that the accuracy is additionally dependent on the inherent limitations of the Z-Transform 
method itself. For example, errors can be caused by a low resonant frequency with a low Q-

factor, i.e. ( ) mcrres 2/0ρω +< . This makes the pole locations completely real and hence they are 
situated on the real axis. In order to accurately represent the required frequency response, a 
higher order filter will be required in such cases.  
 
4. 2 Results in 3D FDTD 
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              Figure 2.- 3D FDTD grid                Figure 3.- Reflection from the 3 boundaries 
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Figure 4.- Expansion of reflected part in Fig.3     Figure 5.- FFT of reflected part 
 
The 3D results are shown in Figures 2-5. In order to quantify which is the quickest technique, 
the runtimes were measured. All measurements were conducted in the same grid so that run 
times could be directly compared. The quickest technique used to model the mass-damper-
spring is the Integration-Differentiation method. The convolution method is by far the most 
computationally expensive (in both runtime and memory requirements), and is over 5 times 
more expensive that the Integration-Differentiation technique in 3D FDTD. The Z-Transform 
method is slightly more expensive than the Integration-Differentiation method in 1D FDTD. In 
3D FDTD the Z-Transform method is about as efficient as the Integration-Differentiation method. 
The results clearly show that, with a proper filter design, the Z-Transform is the most efficient 
and accurate approach to model frequency dependent boundary conditions in room acoustics.   
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Figure 6.- Calculation time comparison in 3D FDTD, 1 reflection only. 
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4. 3 Modelling Room Surface Absorption Coefficient in FDTD  
Although the above results are for a 
hypothetical mass-damper-spring 
system, the Z-Transform method can 
be readily applied to other types of 
frequency dependent boundary 
conditions. The advantage of using 
the reflection coefficient as the basis 
of the Z-Transform formulation is that 
the magnitude of the reflection 
coefficient can be easily related to the 
usual absorption coefficient by the 
simple approximation α−= 1R . 
Since phase information is not 
available from the usual absorption 
coefficient data, the frequency 
spectrum of the amplitude alone can 
be used to generate a suitable filter 
design using techniques such as the 
bilinear transformation of standard 
analogue prototypes or modern optimisation methods such as Least p-th norm, and linear 
phase or minimum phase constraints can be applied if desired. 
 
5. CONCLUSIONS 
For interior acoustic problems, the boundary conditions must be modelled as accurately as 
possible. Errors in the modelling of the boundaries will affect the measured performance, and 
such errors will also increase with reflection order. It is therefore important to find an accurate 
and efficient method to model boundary conditions in FDTD simulations. In this paper, 3 
different techniques were tested, using a hypothetical mass-damper-spring system as an 
example boundary. It was found that the most accurate method is the convolution method. 
However, this is extremely computationally expensive and requires around 5 times more 
processing time than the Integration-differentiation method to create accurate results in 3D 
FDTD. The Integration-differentiation method is the most efficient method. However, its 
accuracy deteriorates much quicker at higher frequencies, and the method cannot be readily 
used to model real walls using existing empirical absorption data. The Z-Transform method is 
computationally as efficient as the Integration-differentiation method but is far more versatile 
and accurate, and is considered the best overall. The formulation of the boundary condition 
presented in this paper is based on the reflection coefficient. This provides a convenient way of 
translating the absorption coefficient into a suitable filter design. Obviously the lack of phase 
information in the absorption coefficient data is a limitation, but until such information is 
available it is an efficient and practical way of modelling room acoustics boundary conditions in 
FDTD. 
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Figure 7. An example of Z-Transform filter designs 
based on real absorption coefficient data. A good fit is 
obtained using a 12th order filter. Phase is not 
constrainted in this example. 


