RUIDO EN CENTROS DE TRANSFORMACION MT/BT

J.J.M. REQUENA

*Jefe Normalización Area Distribución IBERDROLA S.A.; Director de la Revista Acústica y Miembro del Consejo Rector de la S.E.A.

1. FLUIDO DE TRANSFORMADORES

1.1. Vibraciones y Ondas

El ruido es una sensación senora que tiene su origen en la vibración mecánica de la materia en cualquiera de sus estados. En el caso de los transformadores eléctricos de potencia, las chapas magnéticas que constituyen el núcleo, vibran extensionalmente, excitadas por el campo magnético alternativo generado por la tensión de alimentación. Se trata de una vibración forzada y sostenida por la red. Vibración que consume una parte muy pequeña de la energía transmitida por el transformador, y que se degrada en calor y en excitar ondas elásticas (acústicas) en el medio fluido que rodea las chapas: aceite u otros dislécticos líquidos o aire. Estas ondas, excitan la carcasa exterior que al vibrar radiar energía elástica en forma de ondas acústicas en el aire, que son causa de la sensación característica del ruido de transformadores (zumbido).

Tanto la vibración como las ondas son oscilaciones de la materia. La diferencia está en que hablamos de vibraciones cuando el sistema mecánico está constituido por elementos localizados mientras que en el caso de fluidos los componentes responsables de la oscilación, masa y elasticidad, están distribuidos formando un medio continuo. La oscilación de una parte del fluido (en contacto con el sistema vibrante) se transmite en el mismo, en forma de onda de presión acústica (la vibración de la cuba del transformador produce sucesivamente en el aire que la rodea compresiones y expansiones) en que p es el valor eficaz de las variaciones de presión (medido con microfónicos en gases, hidrófonos en líquidos).

Las variaciones de p en el espacio y en tiempo, están definidas por la ecuación de onda:

\[\frac{\partial^2 p}{\partial z^2} = \frac{\gamma P_0}{p} \frac{\partial^2 p}{\partial \tau^2} \]

- \(P_0 \) = Presión estática del lugar \(\approx 10^5 \text{ N/m}^2 \)
- \(\gamma \) = Densidad del aire = 1.29 Kg/m³ a 0°C
- \(r \) = Vector espacial (m)
- \(\gamma = c_p/c_v \) del aire = 1.41

133
1.2. Origen del ruido. Efecto magnetostrictivo

El ruido de transformador eléctrico tiene su origen en el efecto magnetostrictivo producido en las chapas del núcleo por la inducción magnética generada por la corriente eléctrica alterna de alimentación.

Las deformaciones magnetostrictivas de las chapas magnéticas constituyen vibraciones mecánicas del núcleo del transformador, vibraciones que son radiadas al aire en forma de ondas acústicas bien directamente en los transformadores secos o a través de los dieléctricos líquidos en los transformadores sumergidos.

El ruido radiado (ruído) está formado por un conjunto de armónicos de la frecuencia de la red introducidos principalmente por la no linealidad del fenómeno magnetostrictivo y al que pueden contribuir tanto armónicos presentes en la red de alimentación como resonancias del núcleo y demás partes mecánicas de la estructura del transformador incluida la cuba (figura 1).

Por su correlación con la radiación acústica magnetostrictiva es preciso analizar las bases del magnetismo y la magnetización en relación con los materiales ferromagnéticos utilizados en transformadores.

1.3. Niveles de Potencia Acústica dBA (UNESA y CENELEC).

En la tabla 1 siguiente se recogen los valores especificados en el documento CENELEC HD 428 S21983) y los estipulados por la actual normativa española de UNESA. La diferencia en cuanto a la mayor exigencia de la recomendación UNESA se justifica, en parte, por la mejora habida en las fabricaciones de transformadores más silenciosos y a su vez porque los valores CENELEC son valores límites y los de UNESA son valores recomendados.

<table>
<thead>
<tr>
<th>Potencia Tráns. aceite (KVA)</th>
<th>24 KV UNESA</th>
<th>36 KV UNESA</th>
<th>24 KV HD428S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>49</td>
<td>54</td>
<td>55</td>
</tr>
<tr>
<td>100</td>
<td>53</td>
<td>58</td>
<td>59</td>
</tr>
<tr>
<td>160</td>
<td>59</td>
<td>61</td>
<td>62</td>
</tr>
<tr>
<td>250</td>
<td>62</td>
<td>64</td>
<td>65</td>
</tr>
<tr>
<td>400</td>
<td>65</td>
<td>67</td>
<td>68</td>
</tr>
<tr>
<td>630</td>
<td>67</td>
<td>69</td>
<td>70</td>
</tr>
<tr>
<td>1000</td>
<td>68</td>
<td>70</td>
<td>73</td>
</tr>
</tbody>
</table>

* Valores calculados a partir de medidas de nivel de presión sonora en los cuatro puntos centrales de la superficie perimetral normalizada (a 0.3 m del transformador)
2. AMBIENTE ACUSTICO DE LOS EMPLEAZAMIENTOS DE LOS C.T.

A los efectos de prever las posibles interferencias acústicas del funcionamiento de un nuevo C.T., el punto de partida es conocer las características acústicas del entorno.

Una primera valoración acústica del entorno la constituye la "zona acústica" del enclavamiento, que define los niveles máximos permitidos para ruidos radiados al exterior y de inmisión en los recintos receptores (figura 2).

Figura 2. Límites del impacto sonoro de los C.T. en el vecindario

A título de referencia se dan los valores máximos admitidos en cuatro zonas y en ambientes exteriores e interiores recogidos en la Ordenanza General de Protección del Medio Ambiente del Excelentísimo Ayuntamiento de Madrid (tablas II y III).

Tabla II. Ambiente Exterior.

<table>
<thead>
<tr>
<th>SITUACION, ACTIVIDAD</th>
<th>NIVEL MAXIMO (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DIA</td>
</tr>
<tr>
<td>Zona con equipamiento sanitario</td>
<td>45</td>
</tr>
<tr>
<td>Zona con residencia, servicios terciarios no comerciales y equipamientos no sanitarios</td>
<td>55</td>
</tr>
<tr>
<td>Zona con actividades comerciales</td>
<td>95</td>
</tr>
<tr>
<td>Zona con actividades industriales o servicios urbanos excepto servicios de la administración</td>
<td>70</td>
</tr>
</tbody>
</table>

Tabla III. Ambiente Interior.

<table>
<thead>
<tr>
<th>SITUACION, ACTIVIDAD</th>
<th>NIVEL MAXIMO (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DIA</td>
</tr>
<tr>
<td>Equipamiento Sanitario y Bienestar Social</td>
<td>30</td>
</tr>
<tr>
<td>Cultural y Religioso</td>
<td>30</td>
</tr>
<tr>
<td>Educativo</td>
<td>40</td>
</tr>
<tr>
<td>Para el Ocio</td>
<td>40</td>
</tr>
<tr>
<td>Servicios Terciarios, Hojedaja</td>
<td>40</td>
</tr>
<tr>
<td>Servicios Terciarios, Oficinas</td>
<td>45</td>
</tr>
<tr>
<td>Servicios Terciarios, Comercio</td>
<td>55</td>
</tr>
<tr>
<td>Residencial, Piezas Habitables Excepto Cocinas</td>
<td>35</td>
</tr>
<tr>
<td>Pasillos, Aseos y Cocinas</td>
<td>40</td>
</tr>
<tr>
<td>Zonas de Acceso Común</td>
<td>50</td>
</tr>
</tbody>
</table>
3. CONTROL DEL RUIDO DE LOS C.T.

Tanto en el caso de recintos cerrados como al aire libre, la propagación puede producir niveles de ruido en las áreas circundantes superiores a los recomendados o limitados por las ordenanzas. En este caso, hay que recurrir a mayores aislamientos acústicos del recinto y/o a apantallamientos en el camino de propagación.

En el aislamiento del recinto y en particular en sus fachadas hay que tener presente el aislamiento global, que tiene en cuenta las posibles distancias de las superficies de cerramiento, con una notable influencia de las partes más débiles como rejillas, puertas, etc. Así un hueco de rejilla de ventilación puede bajar el aislamiento de un muro en 15 o más decibelios, lo que concurre al estudio y diseño de filtros acústicos para atenuar la salida de ruido por las rejillas de ventilación.

La propagación al aire libre es un fenómeno complejo que depende no solo de la fuente sino de la topografía, climatología y características propias del terreno. No obstante, en cada caso, se puede predecir dentro de ciertos límites los niveles de inmisión en las zonas colindantes y proyectar apantallamientos acústicos por medio de barreras naturales o artificiales. Un cálculo aproximado de la atenuación introducida por una barrera se puede obtener del gráfico de la figura 3 (Maekawa) tanto para la fuente puntual como lineal en función del número de Fresnel "N". N = δ/0.5λ en la que δ es la diferencia del recorrido y λ la longitud de onda de cada frecuencia.

En los C.T. alojados en edificios y en particular en los dedicados a viviendas es importante evitar no solo la transmisión del ruido aéreo radiado por los transformadores, sino las vibraciones transmitidas directamente por los soportes a la estructura del edificio, esto conlleva el estudio y propuesta de instalación de elementos antivibratorios.

4. MEDIDAS EN C.T. DE VARIAS ZONAS GEOGRÁFICAS DE ESPAÑA.

Se han realizado medidas de niveles sonoros en 23 C.T. en las ciudades de Santander, Bilbao, Zaragoza, Barcelona, Madrid, Javea y Sevilla. Las medidas de niveles sonoros se realizaron con registradores gráficos, siendo el nivel en el interior de estos C.T. del orden de 55 dBA. En la figura 4, recogemos los valores obtenidos en el exterior de un C.T.

<table>
<thead>
<tr>
<th>Freq (Hz)</th>
<th>100</th>
<th>200</th>
<th>400</th>
<th>800</th>
<th>1.6k</th>
<th>3.15k</th>
<th>6.3k</th>
<th>12.5k</th>
<th>25k</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>52.7</td>
<td>49.6</td>
<td>49.4</td>
<td>47.6</td>
<td>39.4</td>
<td>43.4</td>
<td>33.7</td>
<td>31.5</td>
<td>68.1</td>
</tr>
</tbody>
</table>

Figura 3. Atenuación por barrera (Maekawa)

Figura 4. Instante de la medida y registro gráfico con periodos de integración de 20 segundos realizada en campo próximo (salidas de aireación).