SISTEMA DE AISLAMIENTO ACÚSTICO PARA UN MOTOGÉNERADOR DE EMERGENCIA

Ing. Anttonio M. Méndez
Investigador Independiente

Ing. Edmundo C. Rocha
Consultor Acústico

Laboratorio de Acústica y Luminotecnia – CIC
Camino Centenario y 506 – GONNET – Argentina
Teléfono: 54 21 71 2721
E-mail: acustica@isis.unlp.edu.ar

SUMMARY

In the original project, a motor-generator of 1850 kVA was placed inside a small closed room, situated near a residential zone, with the real possibility to produce acoustic pollution to the neighborhood.

To evaluate the problem, we start calculating the admissible sound pressure levels in the neighborhood, according to the argentinian standards, and the noise transmitted to the offices of the factory.

In a motor-generator, there are three different sources of noise: the mechanical noise produced by the diesel motor; the aerodynamics noise generated by the refrigeration fan and the noise produced by the combustion gases.

From the acoustical point of view, four situations were analyzed:
1. The isolation of the room for the motor-generator;
2. The ventilation conduct for this room;
3. The exhaust of the combustion gases;
4. The isolation of the radiator and refrigeration fan.

INTRODUCCION

En el proyecto original del estudio de arquitectura se estableció la instalación de un motogenerador de emergencias, de 1850 kVA, dentro de un pequeño recinto cerrado, ubicado al lado de una zona de viviendas residenciales a las cuales contaminaría. Asimismo, un grupo de oficinas adyacentes, pertenecientes a la misma planta industrial, se vería afectado por el ruido de este equipo.

En el análisis previo se comenzó por determinar los niveles acústicos máximos admissibles hacia la zona residencial, teniendo en cuenta las reglamentaciones municipales vigentes sobre ruidos al vecindario y los ruidos de fondo existentes en la zona, para distintos horarios.
En los equipos motogeneradores existen tres fuentes principales de producción de ruido: el ruido mecánico que produce el funcionamiento del motor diesel; el ruido aerodinámico generado por el ventilador del radiador del agua de refrigeración y la salida de los gases de combustión.

Como el recinto proyectado era pequeño y no se pudo resolver el intercambio calórico del sistema de ventilación de la sala, para expulsar el calor generado por el block del motor y por el radiador de refrigeración, fue necesario ubicar este radiador de agua y su respectivo ventilador fuera del local destinado al motogenerador. Se eligió colocarlo sobre el tejado de la sala, con lo cual se agregó una fuente de ruido adicional, en una posición muy comprometida.

Desde el punto de vista acústico, se analizaron cuatro situaciones:

1) El aislamiento de la sala que debía encerrar al motogenerador, tanto hacia las oficinas adyacentes como hacia los vecinos;

2) Los conductos de ventilación forzada de dicha sala;

3) Los conductos de escape de los gases de combustión;

4) El aislamiento del conjunto radiador-ventilador, a ser colocado sobre el techo de la sala.

De los niveles de ruido producidos por el motogenerador, que fueron suministrados por el proveedor del equipo, y de los niveles de ruido admisibles para el área de viviendas vecinas, como de las especificaciones para las oficinas cercanas, se determinaron los aislamientos mínimos requeridos y los proyectos de solución a adoptar.

EVALUACION DEL PROBLEMA

La ubicación de un motogenerador de emergencia, dentro de un recinto cerrado, requiere necesariamente proyectar una abertura con una rejilla de protección, por donde el ventilador de refrigeración del equipo pueda soplar aire, que pasando a través del radiador, pueda circular hacia el exterior. Esta disposición iba a incrementar los niveles sonoros en el área residencial ubicada calle por medio. Por otro lado, no se había previsto un aislamiento suficiente en las paredes internas, para que el ruido no contaminara a las oficinas adyacentes.

Las dos soluciones a la situación planteada eran:

- No contaminar los oficinas adyacentes, donde se exigía un nivel de RC 35.
- No contaminar a los vecinos, donde las especificaciones vigentes exigían niveles sonoros nocturnos que no debían superar los 45 dBA en la acera.

MEDICIONES REALIZADAS

Se midieron los niveles sonoros del medio ambiente exterior, incrementados por lo troncho de una autopista cercana, y se los comparó con las informaciones sobre los niveles de ruido del equipo.

En orden cronológico, se comenzó por determinar la forma de disipar la energía calórica del recinto, para lo cual se proyectó montar dos chimeneas para entrada y salida de aire, de circulación forzada por sencillos grupos de ventiladores axiales, ubicados en la parte inferior de cada chimenea y en el interior de la sala.

Al ventilador y su correspondiente radiador de refrigeración del motogenerador se decidió montarlos en forma separada, sobre la terraza de la sala de máquinas. Para evitar que el ruido producido por este conjunto se sumara al propio del motogenerador, se proyectó una cabina acústica adecuada.

Finalmente, se consideraron las radiaciones sonoras de los silenciadores de escape del motor diesel, por cuanto las radiaciones, por vibraciones del propio silenciador, era suficiente para sobrepasar los niveles de ruido admisibles en el vecindario. El ruido generado por la salida de los gases de escape también constituyó un problema que hubo que resolver.
Para los cálculos respectivos se utilizaron las siguientes fórmulas, extraídas de los libros clásicos sobre el tema:

Disminución de niveles sonoros por absorción: \[\Delta N = 10 \log \frac{A_i}{A_o} \]

Aislamiento de un material homogéneo: \[TL = 20 \log Q f - 40 \text{ dB} \]

Cálculo de membranas absorbentes: \[f_s = \frac{600}{\sqrt{m.d}} \]

SOLUCIONES

Mediante un conjunto de soluciones se logró resolver los diferentes aspectos que presentaba el problema.

Para las oficinas interiores se optó por construir una doble pared, agregando a la ya existente, de ladrillo macizo de 30 cm de espesor, una nueva pared de mampostería, de 15 cm de espesor y, sobre ésta, un revestimiento constituido por dos capas de paneles de yeso, de 1,2 cm cada uno, montados sobre la perifería estándar, con interposición de un relleno de fibras de vidrio de 2,5 cm y 30 kg/m² de densidad. La nueva pared y el revestimiento de paneles estaban desvinculadas elásticamente del muro existente. La entrada a la sala se logró a través de una doble puerta acristalada.

En las superficies interiores de todo el recinto se montó un revestimiento absorbente acústico, constituido, 50% de la superficie, por paneles de fibra de vidrio de 5 cm de espesor y densidad 30 kg/m², recubiertos por chapa metálica perforada. El 50% restante se cubrió con chapa lisa, actuando como membrana absorbente, a fin de lograr disminuir la energía de baja frecuencia, debido al motor diesel. La superficie del edificio se trató acústicamente mediante paneles absorbentes suspendidos de fibra de vidrio y recubiertos con un velo de vidrio.

Para las chimeneas de ventilación se proyectaron filtros acústicos, construidos con chapa perforada y relleno de fibra de vidrio. Las paredes del recinto que daban hacia el exterior se construyeron en hormigón armado, de 20 cm de espesor.

Los silenciadores y conductos de escape de los gases de combustión se encerraron en recintos de mampostería, para contribuir a aislar la radiación acústica.

La salida de los tubos de escape se orientó en dirección opuesta a las casas vecinas y se les provveyó de una pequeña barrera acústica, calculada según las fórmulas clásicas.

El proyecto y construcción de la sala destinada a alojar el radiador de refrigeración y su respectivo ventilador, construida según se dijo más arriba sobre la terraza, se considera fuera de los alcances de esta presentación.

CONCLUSIONES

Luego de realizada la obra se comprobó los excelentes resultados del proyecto. Se logró disminuir la incidencia de los ruidos propagados hacia los vecinos, por debajo de los niveles que especifican las reglamentaciones vigentes.

Los niveles sonoros dentro de las oficinas resultaron de valores aceptables, no provocando quejas en el personal que allí trabajaba.

REFERENCIAS