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ABSTRACT 

The traditional formula for the mass-air-mass resonance frequency of a cavity wall 

works well for walls without a structural connection between their two wall leaves 

or for walls whose wall leaves are connected by highly resilient structural 

connections such as steel studs manufactured from thin 25 gauge steel sheet. 

However, for cavity walls whose wall leaves are connected by steel studs 

manufactured from thicker steel sheet or by wood studs, the effective mass-air-mass 

resonance frequency is significantly higher than that predicted by the traditional 

formula. This is because the air spring of the cavity connects, not the masses per unit 

area of the two wall leaves, but the drum modes of the two wall leaves between two 

adjacent studs. The frequencies of the drum modes depend on the boundary 

conditions imposed by the studs. Because the motion of wall leaves at the effective 

mass-air-mass resonance is 180 degrees out of phase and each wall leaf is 

symmetrical about the line connection to a stud, the boundary conditions are 

expected to be close to clamped for rigid studs. As the stud stiffness decreases, the 

drum mode resonant frequencies of both wall leaves decrease, and this decreases the 

effective mass-air-mass resonance frequency. 
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1.  INTRODUCTION 

 

Theories for calculating the sound insulation of cavity stud walls predict that there 

will be a minimum or a change of slope at the normal incidence mass-air-mass resonance 

frequency. However figure 6 in Davy1 with one experimental measurement for 13 mm 

gypsum plaster board on each side of the studs, and figure 6 in Davy2 with three 

experimental measurements for 16 mm gypsum plaster board on each side of the studs, 

both show that the dip in the measured sound insulation occurs at a higher frequency than 

the theoretically predicted normal incidence mass-air-mass resonance frequency for the 

case of 90 mm rigid wood stud walls with porous sound absorbing material in the cavity. 

Davy2 comments that “Note that the predicted mass-air-mass resonance frequency 

of about 80 Hz is significantly less than the measured mass-air-mass resonance 

frequencies of 125 or 160 Hz. This may be due to a structural resonance, which is not 

included in the theory described in this paper. Bradley and Birta3 showed that the sound 

insulation of wood stud exterior walls can be significantly degraded by a structural 

resonance if the two wall leaves are rigidly coupled by the wooden studs. They explained 

this structural resonance in terms of the analysis conducted by Lin and Garrelick4. The 

effects of this resonance can be reduced by structurally isolating the two wall leaves with 

resilient mounts. The frequency of the resonance is about double the calculated mass-air-

mass resonance, and it reduces in frequency as the rigid stud spacing is increased and as 

the depth of the rigid studs is increased.” 

“Bradley and Birta5 reported the results of laboratory sound insulation 

measurements on typical Canadian building facades. These measurements showed the 

structural resonance at 125 Hz. However, field measurements by Bradley et al.6 and 

Bradley7 with actual aircraft noise showed little effect due to this structural resonance.” 

Recently, Davy et al.8 also observed that the dip in the measured sound insulation 

occurs at a higher frequency than the theoretically predicted normal incidence mass-air-

mass resonance frequency for cavity walls with one or two layers of 16 mm gypsum 

plaster board screwed to both sides of steel studs made from sheet steel thicker than 25 

gauge. This difference in resonance frequency led to differences between the measured 

and predicted sound insulation of up to 17.5 dB at 160 Hz. The differences between 

measured and predicted sound insulation in the region of 160 Hz are much greater for a 

stud spacing of 406 mm than for a stud spacing of 610 mm. These observations prompted 

the research described in this paper. 

The first objective of this paper is to offer a physical explanation of why the 

experimentally observed effective mass-air-mass resonance frequency for cavity stud 

walls with stiffer studs is significantly higher than the theoretically predicted normal 

incidence mass-air-mass resonance frequency. The second objective is to point out that 

that the isothermal speed of sound should be used for wall cavities which are filled with 

porous sound absorbing material. 

Lin and Garrelick4 is the only paper that the authors are aware of which has 

theoretically predicted the significant increase in the effective mass-air-mass resonance 

frequency which occurs with stiffer studs and they only considered wooden studs. 

Unfortunately, their dimensionless variables appear to disagree with the properties of the 

wall whose sound insulation they claimed to be calculating. Their use of the Fourier series 

method means that the actual physical reason for the increase in effective mass-air-mass 

resonance frequency is not obvious and they are unable to model the effects of the finite 

size of the wall. 

Narang9 and Davy et al.10 have provided experimental evidence for the use of the 

isothermal speed of sound in a wall cavity which is filled with sound absorbing material. 



 

2.  THEORY 

 

The first bending mode between two adjacent studs of each wall leaf of a cavity 

stud wall is modelled as a linear harmonic oscillator. These two linear harmonic 

oscillators are coupled by the spring of the air cavity. The position, mass and stiffness of 

each linear harmonic oscillator are xi, mi and Ki respectively where i = 1, 2. The stiffness 

of the spring coupling the two linear harmonic oscillators is K12. The system comprising 

the two coupled linear harmonic oscillators has kinetic energy T and potential energy V. 

Its Lagrangian is 
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where t is the time. Applying equations (2) to equation (1) gives 
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To find the resonance angular frequencies of the two coupled linear harmonic 

oscillators, assume that 

 exp( ) for 1,2i ix a j t i  , (4) 

where ai, i = 1,2, are the complex amplitudes of the two coupled linear harmonic 

oscillators and ω is the angular frequency. This assumption gives 
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Equation (5) can only be true for non-zero ai, i = 1, 2, if the determinant of the 

matrix in equation (5) is zero. Thus 

   2 2 2

1 12 1 2 12 2 12 0K K m K K m K       . (6) 

Dividing equation (6) by m1m2 gives 
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gives 
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Expanding this equation gives 

 4 2 0f pf q   , (10) 

where 
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Thus, the resonance frequencies of the system comprising two coupled linear 

harmonic oscillators are 

  2 4 2f p p q     . (12) 

If f1 = f2 = f0 and fa1 = fa2 = fa then equation (9) becomes 

   2 2 2 2 2

0 0 2 0af f f f f      , (13) 

and its positive solutions give the two resonance frequencies of the coupled linear 

harmonic oscillators as 
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In the situation considered in this paper, the frequency fi is the resonance 

frequency of the first bending mode of the ith wall leaf between two adjacent studs and 

fai is the normal incidence mass-air resonance frequency of the ith wall leaf and the air in 

the wall cavity. 

The normal incidence mass-air resonance frequency fai of the ith wall leaf and the 

air in the wall cavity is 
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where ρ0 is the density of air, mi is the mass per unit area of the ith wall leaf, d is the width 

of the wall cavity and c is the speed of sound in air. This means that if m = m1 = m2 is the 

mass per unit area of each wall leaf, the second term under the square root in equation 

(14) is the square of the normal incidence mass-air-mass resonance frequency fmam. 
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Thus, when the wall leaves are the same, the lower resonance frequency f- is the resonance 

frequency of the first bending mode of a wall leaf between two adjacent studs and the 

higher resonance frequency f+ is the root mean square sum of f0 and fmam. The situation is 



more complicated when the two wall leaves are different, and the resonance frequencies 

are given by equation (12). 

The frequency fi is the resonance frequency of the first bending mode of the ith 

wall leaf between two adjacent studs. The problem is that the exact boundary conditions 

at the studs are not known. If the boundary conditions were simply supported at each stud 

or guided at each stud, the resonance frequency fi of the first bending mode of the ith wall 

leaf between two adjacent studs is 
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where L is the spacing between the studs and Ei, υi, ρi and hi are respectively the Young’s 

modulus, the Poisson ratio, the density and the thickness of the ith wall leaf. Note that 

 i i im h   (18) 

On the other hand, if the boundary conditions were clamped at each stud or free 

at each stud 
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Equation (19) produces resonance frequency values which are 2.27 times greater 

than those given by equation (17). Because the wall leaves are vibrating out of phase in 

the effective mass-air-mass resonance mode, a rigid stud line connection will stop the 

wall leaves from moving at the line connection. Because the vibration of a wall leaf is 

symmetrical about the stud line connection in the effective mass-air-mass resonance 

mode, the part of the wall leaf on one side of the line connection will stop the part of the 

same wall leaf on the other side rotating at the line connection. Thus, the boundary 

conditions are likely to be close to clamped. As the studs become less rigid, the boundary 

conditions, imposed by the studs and the wall leaves on the other sides of the studs, are 

expected to depart further from clamped boundary conditions. Nightingale and 

Bosmans11 have shown experimentally that point connections of a building leaf to a stud 

behave like line connections when their spacing is less than half the bending wave length 

of the building leaf. Thus, the above conclusions for line connections also apply to point 

connections in the low frequency region where the effective mass-air-mass resonance 

occurs. As the spacing between the point connections becomes greater than half the 

bending wavelength of the building leaf with increasing frequency, the behaviour of point 

connections gradually starts to differ from the behaviour of a line connection. 

In this paper, the resonance frequency of the first bending mode between the studs 

is calculated by multiplying equation (17) for the simply supported resonance frequency 

by an empirical correction factor r. Japanese researchers12 use a similar approach to 

calculate the resonance frequencies of concrete floor slabs by multiplying the 

approximate formula for the resonance frequencies of a clamped panel by a frequency 

multiplier. The empirical correction factor r is determined by choosing the value which 

gives the best agreement between theory and experiment. It will be greater than zero and 

is expected to be less than 2.27.  

Because the vibration of the two wall leaves in the mass-air-mass resonance mode 

is out of phase there will be a surface through the studs where the studs are stationary. 



This means that the studs will not transmit any translational energy. Because the vibration 

of a wall leaf in the mass-air-mass resonance mode is symmetrical about the effective line 

connection between the stud and the wall leaf, the wall leaf will not rotate at the 

connection to the stud and hence will not transmit rotational energy. This conclusion 

applies regardless of the stiffness of the studs. This means that the leaves are effectively 

not coupled by the studs when vibrating in the mass-air-mass resonance mode. Of course, 

the studs will transmit power for other types of leaf motion by coupling the motion of the 

wall leaves. 

The critical frequency fci of the ith building element leaf is 
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The experimental observation is that a building leaf consisting of two layers, 

which individually have same sheet material properties and thickness, and which is 

screwed, or spot glued, to the studs, has the same critical frequency as a single layer with 

the same sheet material properties and thickness. The reason is that the spot fastening 

enables the two layers to slide relative to each other when bent dynamically, provided the 

bending wave length is shorter than the screw spacing. In the sound insulation prediction 

method used in this paper, this behaviour is modelled by treating the double layers as a 

single layer with twice the thickness and one quarter of the Young’s modulus of the actual 

single layer sheets. This means that the product 2

i iE h  is the same for both the double layer 

and single layer building element leaves. Thus, these double and single layer leaves have 

the same critical frequencies and the same bending wave resonances between studs with 

the same spacing. 

In Davy et al.13, the calculated adiabatic mass-air-mass resonance frequency was 

set to the upper resonance frequency f+ by modifying the cavity depth used in the 

theoretical calculations. The adiabatic mass-air-mass resonance frequency equation (the 

last two expressions in equation (16)) was inverted and used to calculate the equivalent 

cavity width which would make the calculated adiabatic mass-air-mass resonance 

frequency equal to the upper resonance frequency f+. This equivalent cavity width was 

used instead of the actual cavity width when applying the existing theory of Davy1,2,14 in 

order to avoid reprogramming the existing theory. 

Also, in Davy et al.13, because the theory could not predict some of the very deep 

dips in the sound insulation spectrum at the upper resonance frequency f+, in some cases 

the sound absorption coefficient of the wall cavity was multiplied by an empirical factor 

at and below an empirical frequency. These empirical values were determined by making 

the theory agree with experiment as well as possible. The sound transmission between the 

wall leaves via the studs was included below the upper resonance frequency f+ in Davy et 

al.13. In this paper, the sound transmission between the wall leaves via the studs was only 

included above the upper resonance frequency f+. 

The effective mass-air-mass resonance is included in the theory used in this paper 

by modifying Davy’s1,2 theory for the transmitted sound due to airborne sound 

transmission across the cavity. The sound transmission coefficient of the wall is initially 

modelled as though it is a single leaf wall with the same total mass per unit area1,15. Then, 

following an approach like that of Bradley et al.16, this sound transmission coefficient is 

multiplied by the following mass-spring resonance power transmissibility function T. 
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where D is the ratio of the actual damping to the critical damping and f+ is the resonance 

frequency of the effective mass-air-mass resonance. At higher frequencies, this approach 

would predict too low a sound transmission coefficient due to sound transmission across 

the air cavity via the air in the cavity. This problem is solved by taking the maximum of 

the sound transmission coefficients above the effective mass-air-mass resonance 

frequency predicted by this approach and Davy’s1,2 existing theory for the transmitted 

sound due to airborne sound transmission across the cavity. 

Because the power transmissibility function T already includes the rapid decrease 

in airborne sound transmission across the wall cavity that occurs above the effective mass-

air-mass resonance frequency f+, the frequency dependent restriction imposed by equation 

(35) of Davy1 is removed. Once the sound transmission via the air in the wall cavity is 

calculated, it is combined with the sound transmission via the studs14, but as stated above, 

the stud borne sound transmission is only included above the effective mass-air-mass 

resonance frequency f+. 

All the cavity stud walls considered in this paper had porous sound absorbing 

material in their wall cavities. Based on the observations of Narang9 and Davy et al.10 that 

adding porous sound absorbing material to a wall cavity changes the speed of sound from 

the adiabatic value to the isothermal value, the isothermal speed of sound was used in 

equation (15). For 25-gauge studs, it appears experimentally that the decrease due to the 

isothermal speed of sound in wall cavities filled with sound absorbing material 

counteracts the smaller increase in the mass-air-mass resonance frequency due to the 

drum mode. 

 

3.  EXPERIMENTAL RESULTS 

 

The empirically determined values of the bending wave resonance frequency 

multiplier r, the effective mass-air-mass resonance frequency f+, the ratio D of the actual 

damping to the critical damping of the effective mass-air-mass resonance, the Young’s 

modulus E and the damping loss factor η of the gypsum plaster board (GPB) layers are 

given in Table 1 for 8 cavity stud walls measuring 3.05 m wide by 2.44 m high, with 39 

x 89 mm wood studs and layers of 13 or 16 mm gypsum plaster board on each side,. The 

numbers in the GPB Layers columns denote the thicknesses of the GPB layers in mm. 

The letter X denotes type X fire rated GPB. All the walls had porous sound absorbing 

material in their wall cavities. The wood stud wall data is taken from Halliwell et al.17 

and experimentally determined values of the surface density of the GPB layers were used. 

In Davy et al.13, experimentally determined values of the Young’s modulus and a fixed 

value of 0.3 for the damping loss factor were used. However, when comparing the theory 

with the experimental results, it was noticed that there was obviously variability in the 

Young’s modulus and the damping loss factor for the different samples of GPB used to 

construct the 8 different cavity stud walls. Thus in this paper, empirical values of the 

Young’s modulus E and the damping loss factor η were determined by making the 

theoretical predictions agree with the experimental sound insulation values as well as 

possible in the region of the critical frequency dip. Empirical values of the bending wave 



resonance frequency multiplier r, the effective mass-air-mass resonance frequency f+ and 

the ratio D of the actual damping to the critical damping of the effective mass-air-mass 

resonance were determined by making the theoretical predictions agree with the 

experimental sound insulation values as well as possible in the region of the effective 

mass-air-mass resonance. 

Quirt et al.18 determined the Young’s modulus E and damping loss factor η by 

supporting beams of gypsum plaster board horizontally on pipe supports with a 2.5 cm 

overhang at both ends. The beams were tapped with an impact hammer or a finger and 

the impulse response at the centre of the beam was measured with an accelerometer. The 

impulse response was Fourier transformed to obtain the frequency response. The 

frequency of the first beam mode was determined from the first resonance frequency peak 

in the frequency response and the Young’s modulus E was calculated by assuming that 

the beam was simply supported. The damping loss factor η was calculated by dividing 

the half power bandwidth of the first resonance peak by the frequency of the first 

resonance peak. Note that Quirt et al.18 give flexural stiffness as the product EI of the 

Young’s modulus E and the second moment of area I. They give the damping in terms of 

the damping ratio ζ which is half of the damping loss factor η which is used in this paper 

and express the damping ratio ζ as a percentage. The product EI is expressed in the slightly 

unusual units of N mm2/mm. The Young’s modulus E was measured using beams cut 

perpendicularly and parallel to the long axis of the gypsum plasterboard sheets and the 

average value obtained across the two directions is quoted in this paper. The damping 

loss factor η was determined only from measurements on beams cut perpendicularly to 

the long axis of the gypsum plasterboard sheets. 

Table 1. Empirically determined values of the bending wave resonance frequency 

multiplier r, the effective mass-air-mass resonance frequency f+, the ratio D of the actual 

damping to the critical damping of the effective mass-air-mass resonance, the Young’s 

modulus E and the damping loss factor η. 
 

Wall 

No. 
GPB Layers GPB Layers r f+ (Hz) D E (GPa) η 

1 12.7X 12.7X 1.98 148 0.075 2.47 0.042 

2 12.7 12.7 1.72 136 0.106 1.93 0.034 

3 12.7X 12.7X 1.80 136 0.095 2.53 0.029 

4 15.9X 15.9X 1.58 146 0.088 2.15 0.030 

5 12.7X 12.7X+12.7X 1.91 141 0.000 2.55 0.040 

6 12.7 12.7+12.7 1.76 133 0.100 1.99 0.034 

7 15.9X 15.9X+15.9X 1.70 151 0.074 2.17 0.031 

8 12.7X+12.7X 12.7X+12.7X 2.01 144 0.000 2.60 0.040 

 

The 12.7 mm X fire rated gypsum plaster board had the highest empirical effective 

Young’s moduli of 2.60, 2.55, 2.53 and 2.47 GPa. The average measured Young’s 

modulus was 2.26 GPa. The 15.9 mm X fire rated gypsum plaster board had empirical 

effective Young’s moduli of 2.19 and 2.17 GPa compared to an average measured value 

of 2.41 GPa. The 12.7 non-fire rated gypsum plaster board had empirical effective 

Young’s moduli of 1.99 and 1.77 compared to an average measured value of 2.18 GPa. 

It is interesting to note that the relative order of the different gypsum plaster boards is 

different for the empirical values and the average values measured on an isolated beam. 



The 12.7 mm X fire rated gypsum plaster board had the three highest damping 

loss factors of 0.042, 0.040 and 0.040. Strangely it also had the lowest empirical damping 

loss factor of 0.029. Its damping loss factor was not measured. The 12.7 mm non-fire 

rated gypsum plaster board had empirical damping loss factors of 0.034 and 0.034. The 

averaged measured damping loss factor of isolated beams was 0.0230 with a standard 

deviation of 0.0152. The 15.9 mm X fire rated gypsum plaster board had empirical 

damping loss factors of 0.031 and 0.030. The averaged measured damping loss factor of 

isolated beams was 0.0136 with a standard deviation of 0.0016. As expected, the in-situ 

damping loss factors were higher than those measured on isolated beams through the 

relative order is the same. Further investigation revealed that the three walls with the 

highest damping loss factors had 90 mm of blown cellulose fibre insulation in their wall 

cavities while the five walls with the lower damping loss factors had 90 mm of mineral 

fibre insulation in their wall cavities. 

The bending wave resonance frequency multipliers r of the 12.7 mm X fire rated 

gypsum plaster board were 2.01, 1.98, 1.91 and 1.80. The frequency multipliers for the 

12.7 mm non-fire rated gypsum plaster board were 1.76 and 1.72, while the 15.9 mm X 

fire rated gypsum plaster board had frequency multipliers of 1.70 and 1.58. These 

frequency multipliers are different from those determined by Davy et al.13 because the 

empirically determined Young’s moduli, which also effect the effective mass-air-mass 

resonance frequency, are different from the measured values used by Davy et al.13 and 

because the method of determining the frequency multipliers by fitting the 

transmissibility function of equation (21) is more sensitive and accurate. 

It is interesting to note that, for the resonance frequencies of concrete floor slabs, 

Japanese researchers12 use the approximate formula for the resonance frequencies for a 

clamped panel with a frequency multiplier of 0.8. This is the same as a frequency 

multiplier r of 1.82 times the simply supported panel resonance frequencies. 

The ratios D of the actual damping to the critical damping of the effective mass-

air-mass resonance for the 12.7 mm non-fire rated gypsum plaster board were 0.106 and 

0.100. The 12.7 mm X fire rated gypsum plaster board had damping ratios of 0.095, 0.075 

0.000 and 0.000. The damping ratios of the 15.9 mm X fire rated gypsum plaster board 

were 0.088 and 0.074. The two damping ratio values of 0.000 cannot be correct and only 

occur because the two effective mass-air-mass resonance frequencies of 141 and 144 Hz 

are the two frequencies which are closest to the frequency of 141 Hz which is the mid-

point frequency on a logarithmic scale between the third octave band centre frequencies 

of 125 and 160 Hz. This means that the resonance transmission function T values at 125 

and 160 Hz are not strongly controlled by the damping ratio D values in these cases. 

The fact that the empirical values were usually similar for the same type of 

gypsum plaster board gives confidence in the empirical values. 

Figure 1 shows the difference between theory and experiment in decibels for the 

sound insulation of the eight 39 x 89 mm wood stud cavity walls listed in Table 1, with 

layers of 13 or 16 mm gypsum plaster board (GPB) on each side, measuring 3.05 m wide 

by 2.44 m high. The differences are small in the 100 to 125 Hz range, where the effective 

mass-air-mass resonance occurs, and at 3150 Hz, in the critical frequency region, because 

the empirical values were determined by minimising the differences in these two 

frequency ranges. The theory systematically under predicts below 100 Hz and above the 

critical frequency. The theory also under predicts at 200 or 250 Hz because it struggles to 

predict the very rapid increase in the sound insulation above the effective mass-air-mass 

resonance frequency. Above 250 Hz and below the critical frequency, the theory both 

over predicts and under predicts. 



 

Figure 1. The difference between theory and experiment in decibels for the sound 

insulation of the walls listed in Table 1. 
 

 

Figure 2. Comparison of the measured sound insulation for wall No. 1. with predictions. 
 

Figure 2 compares the experimental sound insulation for wall No. 1. with 

predictions using the point connection model (combopt) and the line connection model 

(combostud) for modelling the sound transmission across the cavity via the studs. This 

wall has single sheets of 12.7 mm fire rated GPB on each side of 39 x 89 mm wood studs. 

The point connection model predicts the sound insulation much better than the line 

prediction model. This shows the importance of the screw spacing. 
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Figure 3. Comparison of the measured sound insulation for wall No. 8. with predictions. 

 

Figure 3 compares the experimental sound insulation for wall No. 8. with 

predictions using the point connection model (combopt) and the line connection model 

(combostud) for modelling the sound transmission across the cavity via the studs. This 

wall has two sheets of 12.7 mm fire rated GPB on each side of 39 x 89 mm wood studs. 

Again, the point connection model predicts the sound insulation much better than the line 

prediction model. 

 

4.  CONCLUSIONS 

 

This paper presents the theory for calculating the effective normal incident mass-

air-mass resonance frequency for a double leaf cavity stud building element. If the two 

building element leaves are similar, this frequency is the root mean square of the first 

bending wave mode resonance frequency of the building element leaf between adjacent 

studs and the normal incident mass-air-mass resonance frequency of the version of the 

building element without studs. If the building element cavity contains porous sound 

absorbing material, the isothermal normal incident mass-air-mass resonance frequency 

should be used. Although not shown in this paper, for a building element cavity without 

porous sound absorbing material, it is expected that the adiabatic normal incident mass-

air-mass resonance frequency should be used. 

Because the exact boundary conditions of the building element leaves at the studs 

are not known, and because these boundary conditions will depend on the compliance of 

the studs, this paper gives empirically determined factors by which to multiply the first 

bending wave mode resonance frequency of the building element leaf between adjacent 

studs with simply supported boundary conditions in order to obtain this resonance 

frequency with the actual boundary conditions. 

In order to calculate the correct sound insulation of a double leaf cavity stud 

building element with porous sound absorbing material in its cavity in the vicinity of the 

effective normal incident mass-air-mass resonance frequency, this paper gives 

empirically determined values of the bending wave resonance frequency multiplier r, the 

effective mass-air-mass resonance frequency f+, the ratio D of the actual damping to the 

critical damping of the effective mass-air-mass resonance, the Young’s modulus E and 
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the damping loss factor η of the gypsum plaster board (GPB) layers for 8 wooden stud 

walls with porous sound absorbing material in their wall cavities. 
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