
 

The power of the equivalent source set as a criterion for the 

solution accuracy of the scattering problem 

Gounot, Yves1   

Department of Applied Mathematics  

Instituto de Matemática e Estatística 

Universidade Federal Fluminense 

Rio de Janeiro, Brazil 

 

ABSTRACT 

The paper investigates the power of sources obtained with two variants of the 

Equivalent Source Method applied to an acoustic scattering problem: one using the 

least square method (LSM), the other, the full field equations (FFE). It is found that 

LSM and FFE produce source sets with totally different characteristics, LSM ones 

showing much more energetic interaction between sources than FFE ones. 

Quantitative results about the low total power a LSM appropriate monopole set 

should get are also given. These features are used to explain why, although much 

more unstable than FFE, LSM has a better ability to reproduce the problem 

boundary condition. Moreover, results obtained with a genetic algorithm show that, 

with LSM, this required low emitted (or absorbed) power should be produced by 

sources whose amplitudes are nevertheless “quite high”, these two criteria 

constituting some guidelines that ensure LSM accurate solutions. 
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1. INTRODUCTION 

Sound field modelling, whether radiated by a vibrating structure or resulting from 

the scattering of an incident wave impinging on a body, is conventionally performed using 

the boundary element method. More recently developed, the Equivalent Source Method 

(ESM), simpler and therefore with a lower computational cost, is an interesting 

alternative. The idea of the method lies in the substitution of the body for a set of point 

sources – monopoles or multipoles - placed “inside” the body and whose complex 

amplitudes are determined so that the source set best reproduces, at the boundary, the 

velocity field corresponding to the real situation. However, the method presents two main 

drawbacks: while it does not always converge as the number of monopoles used in the set 

increases, the accuracy of the solution also depends strongly on the positioning of the 

sources, two factors intrinsically linked, as shown in [1]. 

In addition, there are no general rules for choosing an appropriate source set, even 

though different approaches have already been proposed to resolve the source positioning 
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problem in some special cases (see, for instance, studies by Kropp and Svensson [2] or 

Koopmann and Fahnline [3]). Gounot and Musafir have investigated another approach 

[4] that aims to solve the problem in a global way. They have developed a computational 

code that combines ESM with genetic algorithms to simultaneously search for the 

amplitudes and positions of the sources responsible for the smallest possible boundary 

error. In this paper, solutions of a 3D scattering problem obtained with two variants of 

the ESM – one using the least square method (LSM), the other one being the “Full Field 

Equations” (FFE) proposed by Ochmann [5] – are compared. New results regarding the 

acoustic power of the equivalent sources (solutions of the problem) obtained with these 

two ESM variants are used in order to explain why, despite a significantly higher 

numerical unstability, LSM can provide, in some cases, solutions with better precision. 

 

2.  THEORITICAL BACKGROUND 

 

2.1 The scattering problem 

When the surface of a body immersed in a fluid is vibrating with angular 

frequency , a sound pressure field p is radiated (see Figure 1a). In the frequency domain, 

p is the solution of the Neumann boundary value problem [6], namely p satisfies the 

Helmoltz equation (Equation 1) 
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where k =  / c0, c0 being the sound propagation speed, and also the boundary condition 

given by Equation 2 
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where ρ0 is the fluid mean density, nu is the normal velocity prescribed on the surface S, 

and x and xS denote points in the propagation domain ΩE and on the boundary, 

respectively. 

 

 

 

 

 

 

 

 
 

Figure 1: Representation of the radiation (a) and scattering (b) problems. 

 

The scattering problem, generated by the impinging of an incident wave on a body 

can be seen and solved as a radiation problem (see Figure 1b), in which, now, the 

scattering pressure psc is solution of the Neumann boundary value problem. As for the 

boundary condition, if a rigid body is considered, the zero total normal velocity (vsc + vn
inc) 

on S, implies that the normal velocity prescribed on S must be thus – vn
inc, i.e., the opposite 

of the velocity which would be generated “on S” by the incident wave alone, in the 

absence of the body [1, 5]. 
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2.2 The Equivalent Source Method 

The Equivalent Source Method substitutes the real body for a set of M sources at 

points ym, placed strictly inside the body. The sound field due to these sources is expressed 

in terms of their unknown complex amplitudes, Am, and of a function g(x, y) describing 

their radiation. Any function g that satisfies the Helmoltz equation and the radiation 

condition can be used. The simplest one, which corresponds to monopoles (used in this 

study), is the free-space Green function [6]. Expansions in spherical wave functions at 

one or various points are also frequently used. By virtue of the principle of superposition, 

the scattered pressure and velocity at x can be written as 
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Since a finite number of sources M is considered, the boundary condition cannot 

be exactly satisfied, and a local velocity error εv (given by the difference between the velocity 

due to the sources and the theoretical value – vn
inc) is generated on S. For a given source set 

(i.e., a specified number and position), the “optimal” source strength {Am
*} are obtained 

by minimizing the velocity error on S and, in turn, Equation 3 provides an approximation 

for the scattered pressure field. The two ESM variants compared in this paper differ in the 

minimizing technique used: while LSM consists in minimizing the sum of the squared εv 

on the boundary, FFE uses the weighted residual technique in which the ponderation 

functions are the complex conjugate of the spherical wave functions (for more details, see 

[5]). With this latter variant, diagonally dominant matrices are generated, which are 

responsible for the FFE higher numerical stability. 

 

3.  NUMERICAL SIMULATION AND RESULTS 

 

3.1 The Case under Study 

The results presented in this work concern the 3D scattering problem given by the 

impinging of a plane wave on a rigid cube with dimension L equal to the wavelength of 

the incident wave (i.e., kL = 2π). The sources are monopoles which are uniformly 

distributed on “supports” with easy-to-implement geometries (one linear, parallel to the 

wave vector k, and one circular, both centred at the centre of the cube). In order to 

investigate the influence of the source position and compactness on the solution accuracy, 

the size of the source supports is given by multiplying the cube dimension by a reduction 

factor a (0 < a < 1). The lower a is, smaller the source support, and consequently – for a 

given number of sources M – more compact and concentrated close to the cube centre 

will be the set. In order to evaluate the accuracy of the solutions obtained both with LSM 

and FFE, the normalised velocity error on the boundary, given by Equation 5, is used. 
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3.2 On the Emitted Acoustic Power 

 The acoustic power engendered by a sound source inside a closed surface can 

be expressed through the complex acoustic intensity, i.e. through the pressure and 

velocity fields radiated at the surface, given by 
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where * denotes the complex conjugate, p and v are the total pressure and velocity, vn 

being the normal component of v. In the case of scattering by a rigid body, the boundary 

condition being theoretically vn = 0, the acoustic power is consequently zero (see 

Equation 6), since the scatterer obviously does not emit neither absorb any power, but 

merely ‘redistributes’, diffuses it in the exterior region.  

Nevertheless, when the scatterer is modeled by a finite number of point sources – 

which is the case with ESM – the failure to reproduce exactly the boundary condition 

implies in a local velocity error field on S, εv , responsible for a net power emission (if 

positive value) or absorption (if negative value) given by  
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This residual power produced by the equivalent sources can be directly computed from 

their source strengths [7], since the power emitted by a monopole of strength qm located 

at ym is given by 

( )  *
0 )(Re21 mmm qpρW y=      (8) 

 

where p(ym) is the total acoustic pressure at ym and qm = (i)-1 Am. This procedure to obtain 

the source power is exact and will be used in the computation of WESM.  

 

3.3 Results and Discussion 

Figure 2 shows how characteristics of the LSM (in black) and FFE (in red) 

solutions vary as the number of monopoles used in the set increases from 2 to 50.  
 

 
 

Figure 2: Boundary error, source set power and source strength mean amplitude for 

a) circular and b) linear configurations versus the number of sources 

 with LSM (black) and with FFE (red) for a = 0,25 (•), a = =0,5 (+) and a = =0,75 (◦). 
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These characteristics are: the solution accuracy (eBC), the source set normalized power 

(WESM) and its average source strength value (AESM) The results are shown for both 

circular and linear supports and, in each case, for three support sizes corresponding to 

a = 0,25, 0,5 and 0,75. 

First of all, one can observe the FFE stability and robustness, since the solution 

accuracy increases – namely, eBC decreases – as the number of sources increases. This 

solution convergence (even though, slow) is obtained with source sets which show a 

slightly decrease in power and in average source amplitude as M increases. As for the 

influence of the source support (position of the sources), the best solutions are generally 

obtained with a = 0.5, i.e., when monopoles are neither too close to the border nor too 

concentrated gathered near the structure center. 

As for the LSM, the eBC curves show a somewhat chaotic aspect reflecting an 

important unstability, especially when M exceeds a certain threshold value (which 

intrinsically depends on the position of the sources), and beyond which the source 

amplitudes and powers may reach extremely high values. These rather high values are 

clearly propitious to engender numerical unstability and thus to cause a degradation of 

the solution accuracy, as shown in [1]. Nonetheless, maybe the most relevant result is 

that, below this M threshold value, LSM solutions are significantly more accurate than 

FFE ones. And, this is precisely because LSM can provide (more) precise solutions with 

very few sources – which represents a benefit not only numerical but also experimental 

if field reconstruction is envisaged – that we focus on what makes these LSM sources 

superior. 

If considering only the LSM solutions with satisfactory accuracy (i.e., the ones 

with eBC less than 0.7, a limit materialized by a green line in Fig. 2), it appears that they 

are all obtained by source sets with | WESM | ≤ 0.25, namely, which total emitted (or 

absorbed) power is lower than 25% of the power received by the scatterer. Note that, 

although this condition seems necessary, it is obviously not sufficient, as evidenced by 

the following counterexample : as a matter of fact, even though a set made of exclusively 

zero amplitude sources would generate no power, it neither will produce any pressure and 

velocity field, and therefore cannot reconstruct any scattering problem boundary 

condition. Another main characteristic is that these low WESM values are observed despite 

a pretty high average source strength magnitude, up to 103 times the amplitudes of the 

sources provided by FFE. By the way, note that the discrepancy in the behavior observed 

between the circular and the linear supports (the solution degradation occurring for a 

much lower M value with the linear support) can be explained by the fact that, for a given 

M, the source set is much more dense and concentrated in a linear support than in a 

circular one, which allows a better spatial source distribution. 

 

Figure 3 illustrates, for the 16 monopole circular set, the features of the individual 

sources (amplitude, phase and power) representative of the solutions that FFE and LSM 

commonly provide. 

Regarding the source amplitudes, the results illustrate the recurrent fact that, in a 

given set, while FFE sources are very uniform (low and almost constant Am values), LSM 

ones show a strong heterogeneity together with a wide range of values. As for the source 

phases, FFE and LSM sources show also features totally distinct: while LSM monopoles 

“organize themselves” into a sequence of local dipoles (2 juxtaposed monopoles being 

roughly in phase opposition), in the case of FFE, the ‘dipolar behaviour’ only appears 

globally, in the sense that the source set is divided into two source packs basically in 

phase opposition: in this particular case, one pack is made up of the monopoles #5-13 



which are located in the “front” -relatively to the incident wave- of the circular support, 

while the other one is constituted by the other monopoles in the “rear”. 

Figure 3: Amplitude, phase and power of the individual sources  

for the 16 monopole circular set obtained with a) FFE and b) LSM. 

 

These amplitude and phase features mirror on the power of the individual sources. 

In the LSM case, there is a strong energetic interaction, some sources absorbing what 

others emit, which leads to a total power for the set (shown in the 17th column of the Wm 

graphs) always lower than the average of the individual powers. As for the FFE case, the 

interaction between sources is much smaller (most of the sources emit sound power) and 

the power of the source set is basically the sum of the individual powers. This larger 

energetic interaction that LMS induces is, in principle, a required characteristic for a 

better, more detailed reconstruction of the velocity field along the scatterer boundary 

while maintaining the lowest possible global power emission. 

 

3.4 Further results using Genetic Algorithms 

One way to get rid of the problematic positioning of the sources – mentioned in 

the anterior session – is to let the sources free to “move”. With this aim, a computational 

code called ESGA – which combines ESM with Genetic Algorithms –, has been developed 

and first presented in [4]. The code allows to find, for a given number of sources M, the 

“optimal” set, i.e. to determine simultaneously the best complex source strengths and 

position for the M monopoles responsible for the lower boundary error (eBC) possible. 

Like all genetic algorithms, ESGA starts with the formation of a first population made of 

some possible solutions (called chromosomes) randomly generated. The fitness of each 

solution is evaluated, given by its corresponding value for the “cost function”, the 

function (eBC) to be minimized. Three basic genetic operators - selection, crossover and 

mutation -, act on the first-generation chromosomes, preserving some of them and 

transforming others, and engendering a second generation, and so on. The selection 

operator makes that the best chromosomes in a population tend to survive to the next 

population, improving the quality of the successive generations. The crossover and 

mutation operators are responsible for the formation of new chromosomes, which 



‘guarantees’ that the entire search space is scanned -actually it limits the risk of falling in 

a local minimum - and thus that the global optimal is found (for more details, see [8]). 

The first line in Figure 4 shows four typical curves (obtained respectively with 

source sets made of M = 2, 3, 4 and 5 monopoles) of the cost function (eBC) minimization, 

over 1000 ESGA generations/iterations. At each generation, the current best solution (i.e., 

the current best M source amplitudes and position) was stocked to allow, later, the 

computation of its average amplitude AESM and acoustic power WESM (2nd and 3rd lines). It 

is worth emphasizing that, in this process, the only function under minimization is the 

boundary error eBC, and not the two other quantities AESM e WESM, afterward computed. 
 

 
 

Figure 4: Boundary error (eBC) minimized by ESGA (1st line) and set power (2nd line) and 

resulting source amplitude (3d line) obtained for 2, 3 4 and 5 monopole sets. 
 
 

All the numerical trials performed show a similar eBC curve behavior, typical of the 

genetic algorithm minimization, in which an initial phase with a rapid decrease during the 

first generations is followed by a phase with a much slighter and slower one. Note that 

the eBC values (under 0.40) obtained at the last generations - whether with 2, 3, 4 or 5 

monopoles - are lower than the lowest ones obtained with up to 25 fix sources in a linear 

or a circular support (see Fig. 2), which confirms the potential of the ESGA technique. If 

we look at the power emitted by the source set found by the ESGA, one can notice that 

WESM curves mirror roughly these two eBC curve phases: In the first minimization phase, 

WESM  decreases quickly along with eBC, the initial sets with very high power values (for 

the trials shown, the initial sources sets emit about 4 or 5 times the power received by the 

scatterer!) giving rapidly way to source sets with comparatively “negligible” power. In 

the second phase, as eBC keeps on decreasing - even though very slowly, the source sets 

show power kept very low (a fraction of unity) and which can even oscillate between 

positive and negative values. Moreover, the results show that the values towards which 

the power tends (positive or negative) are compatible with the ones previously found (see 

Fig.2), with maximal absolute value about 25-30% of the power of the inciding wave. 

Nevertheless, the most surprising result concerns the amplitude theses ESGA 

optimal source sets show. As in the case of eBC (and WESM) curves, the average amplitude 



curves always show two distinct phases. However, while in the first phase AESM curves 

generally decrease along with eBC, during the second phase ─ in which the eBC 

minimization is much slower, occurs an inversion in the shape of the AESM curves, their 

values starting to continuously increase. It is worth emphasizing that, independently of 

the number of monopoles used in the set, the AESM  curves always converge to a similar 

specific value, between 2.5 and 3 in this case. Anyway, these WESM and AESM  features 

tend to show that an appropriate source set should produce a low sound power (positive 

or negative), though, which should be engendered by sources with average amplitude 

relatively “high”, i.e., which are able to cause important energetic interaction between 

them, a result that confirms the one evidenced with “fixed” sources in Figure 3. 

 

4.  CONCLUSIONS 

Focused on the features of the equivalent source strengths, this investigation 

contributes to a better understanding of the reasons why, beside a strong unstability, LSM 

can lead - especially when the number of sources used is small - to solutions with better 

accuracy than FFE. Results concerning individual sources have shown that this benefit is 

due to the fact that, unlike FFE sources, LSM ones show a significative energetic 

interaction – which allows a finer and more detailed reconstruction of the boundary 

condition. Quantitatively, it was verified that all the source sets that provide accurate 

solutions present a total power (emitted or absorbed) less than 25% of the power received 

by the scatterer, which is obviously a necessary but not sufficient condition. Furthermore, 

results obtained by using the genetic algorithm ESGA have highlighted the fact that the 

solution accuracy is conditioned not only to this low total power, but also to the fact that 

this low power must be generated by sources with relatively “high” amplitudes. Besides 

as guidelines, these source set criteria could be benefitted in a future work, – by including 

them as penalties in the aptitude function to be minimized – in order to accelerate the 

convergence of the ESGA algorithm. 
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