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ABSTRACT 

 

In classic aeroelastic and flutter studies the natural modes of the structures are 

analysed with and without flow coupling. The study of travelling elastic waves in 

presence of flow, or travelling flutter waves, even though being suggested in many 

works in the literature, never had a deep and practical application. Here, within a 

finite element framework, a wave-based approach is coupled with supersonic and 

subsonic aerodynamic theories to analyse the effect of one-sided mean flow on the 

structural dispersion curves. Different polynomial eigenvalue problems arise, 

depending on the aeroelastic model used, as for the observed effects on the elastic 

wave propagation. The method is here applied both on homogeneous and complex-

shaped periodic cells. The sound transmission is also computed and compared to the 

case in which aeroelastic effects are included. 
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In the history of aviation, especially while conducting scientific researches and 

developments, structural failures caused by aeroelastic phenomena have affected many 

fighter aircraft, spacecrafts and jet engines. For this reason, the aeroelasticity of plates 

and shells, which differs from classic aeroelastic theories for lifting surfaces, has been 

widely studied in the last decades. The main issues arise form the difficulty in 

distinguishing between the vibrations induced by the external and self excitation, in 

addition to non-linearities that induce fatigue failures instead of catastrophic 

instantaneous failures [1]. 

 

In most of the studies on aeroelasticity of plates and shells, the modal approach is often 

preferred to a wave-based one, because it allows a clearer evaluation of the flutter 

conditions, analysing the effect of the aerodynamic auto-induced forces on each structural 

mode [1-8]. This approach has been successful in predicting, studying and designing even 

some of the most complex aerospace structures in the history of aviation. 

 

However, very few works are present, generally dealing with infinite ideal structures, 

where the effect of the aerodynamic operator is analysed in terms of the elastic structural 

waves (dispersion curves). J.W. Miles presented a work discussing the flutter of an 

isotropic infinite panel in a two-dimensional incompressible flow, driving the wave speed 

relative to the panel, identifying the flutter conditions versus the circular frequency, [6,7]. 

This work has been furtherly developed by others, [3,6], and will here be used as the main 

reference for validation purposes. 

 

At the same time, nowadays, much attention is placed on periodic/cellular structures, 

especially in the sectors where the main requirement for the structures is a high stiffness-

to-mass ratio. Moreover, the periodic structures have peculiar filtering properties and can 

be modelled to realize frequency-selecting structures and metamaterials [9,10].  

 

Here, within the framework of periodic structures, the effect of one-sided mean flow on 

the structural wave propagation is investigated. Supersonic flow is simulated on a 

periodic flat plate and the sound transmission loss is compared for different flow regimes, 

when aeroelastic effects are accounted in the model.  

 

 

2.  THE NUMERICAL METHOD 

 

The method here presented is based on the Wave Finite Element Method (WFEM), 

[11,12]. This approach, instead of requiring the modelling of a whole periodic or 

homogeneous structure, uses the finite element of a single periodic cell, ideally extracted 

from the whole system. By imposing the periodic conditions to the cell model, the 

dynamics of the whole structural arrangement is analysed. First the mass and stiffness (M 

and K) matrices of the cell’s finite element model (see Fig. 1) are extracted; this operation 

can be performed using any commercial or in-house FE package. 

 



 
Figure 1 – An example of FE model of a periodic cell and the ordering of the hypernodes on the 

corners.  

 

Assuming for simplicity a cell extracted from an homogeneous-in-plane structure, the 

subset of nodes at the corners (hypernodes) can be ordered as in Fig. 1. The periodicity 

conditions can be imposed by simply connecting the nodes each other using complex 

propagating constraints 𝜆𝑥 and 𝜆𝑦 [8-10]. In this way, the degrees of freedom belonging 

to all the hypernodes can be connected to the ones of a single one:  

 

                            (1) 
 

where 𝜆𝑥 and 𝜆𝑦, which are the complex propagation constrants are: 

 

 

                                (2) 
 

where 𝐿𝑥 and 𝐿𝑦 are the sizes of the cell in the plane X-Y, while 𝑘𝑥 and 𝑘𝑦 are the 

wavenumbers (for each wave type) in the X and Y direction, respectively. Identical 

conditions are applicable also to the force vectors. Exploiting the periodic link and 

multiplying the dynamic stiffness equation by the Hermitian of the periodicity matrix, the 

reduced dynamic stiffness equation can be derived: 

 

                    (3) 

 

Where 𝒇 and 𝒆 are the nodal vectors of internal and external forces respectively; 𝜔 is the 

circular frequency. Because of the equilibrium of internal forces between consecutive 

cells, the term  [𝜆]𝐻[𝜆]𝒇 in Equation 3 is null.  

 

At this stage, when no external forces are applied, the problem in Equation 3 is 

representative of a three-parametric eigenproblem in 𝜆𝑥, 𝜆𝑦 and 𝜔, that can be solved by 

imposing two variables at the time [10]. When the propagation constants are imposed and 

the frequency derived, the problem becomes a standard linear eigenvalue problem. If one 

wavenumber and the frequency are fixed, deriving the other one from Equation 3, the 

problem becomes quadratic. For example, expliciting any hypernode component in the 

dynamic stiffness equation, Equation 3 takes the following form: 

 

    (4) 

 

𝒒 =  [𝜆] 𝒒𝟏;  [𝜆] = [ 𝐼 𝜆𝑥𝐼 𝜆𝑦𝐼  𝜆𝑥𝜆𝑦𝐼 ] 

𝜆𝑥 =  𝑒−i 𝑘𝑥𝐿𝑥; 𝜆𝑦 =  𝑒−i 𝑘𝑦𝐿𝑦   

[𝜆]𝐻[ 𝑲 −  𝜔2𝑴 ][𝜆] 𝒒1 = [𝜆]𝐻[𝜆]𝒇 + [𝜆]𝐻[𝜆]𝒆 

 [(𝑫11 +  𝑫22 +  𝑫33 +  𝑫44)𝜆𝑥𝜆𝑦 + ( 𝑫12 +  𝑫34)𝜆𝑥
2𝜆𝑦 + ( 𝑫13 +

 𝑫24)𝜆𝑥𝜆𝑦
2 +   𝑫32𝜆𝑥

2 +  𝑫23𝜆𝑦
2 + ( 𝑫21 +  𝑫43)𝜆𝑥 + ( 𝑫31 +  𝑫42)𝜆𝑦 +

 𝑫14𝜆𝑥
2𝜆𝑦

2 +  𝑫41] 𝒒1 = 𝟎  



Solving the quadratic eigenvalue problem in 𝜆𝑥 or 𝜆𝑦, the dispersion curves of the media 

can be derived. 

 

2.1 The Aerodynamic Model: Piston Theory  

 

To simulate a one-sided mean flow, a specific aerodynamic theory has to be used. Here, 

the simplest aerodynamic theory for supersonic incompressible flows, the Piston Theory 

is used to simulate the aerodynamic operator [1,13]. This theory, valid from Mach > 1.5, 

assumes that the pressure fluctuations in any point of the system are independent from 

the others [1,13]. 

Using the notation of Equation 3, the self-excited force terms can be written as a function 

of the convective and continuity derivative, [1,3,4,13]: 

 

                                       (5) 

 

where w represents the out-of-plane displacements vector (coordinate Z in Fig. 1), 𝜌0 is 

the fluid density, 𝑎0 the sound speed, 𝑨𝑛the nodal area vector and U the flow-speed. The 

out-of-plane displacements can be expressed by multiplying q for a matrix (Δ) of zeros 

and unitary values in the positions corresponding to the target degrees of freedom (in this 

case, the translations in Z). 

In a periodic framework, the spatial derivative in Equation 5, is a function of the structural 

propagation constant (𝜆𝑥, assuming X as the flow direction), and can be expressed, using 

a simple numerical scheme for the first derivative, as in Equation 6. 

 

                                           (6) 

 

Assuming harmonic motion and substituting Equation 5 and 6 in Equation 3, the final 

dynamic stiffness equation is obtained: 

 

    (7) 

 

An altered stiffness of the structure, depending on the wave’s propagation constants in 

the stream-wise direction, is observed. At the same time, an added viscous damping is 

added by the aerodynamic operator. The quadratic eigenvalue problem described in 

Equation 4, for the structure alone, becomes the one in Equation 8, when a one-sided 

supersonic flow is described using the Piston Theory. 

 

    
(8) 

Where the dynamic stiffness matrix D is given by: 

 

𝒆 = −𝜌0𝑎0𝑨𝑛 (
𝑑𝒘

𝑑𝑡
+ 𝑈

𝑑𝒘

𝑑𝑥
) 

𝑑𝒘

𝑑𝑥
= Δ[𝜆] (

𝜆𝑥 − 1

𝐿𝑥
)  𝒒1 

[𝜆]𝐻 [ 𝑲 −  𝜔2𝑴 − 𝜌0𝑎0𝑨𝑛Δ [𝑖𝜔 − 𝑈 (
𝜆𝑥 − 1

𝐿𝑥
)]  ] [𝜆] 𝒒1 = [𝜆]𝐻[𝜆]𝒇 = 0 

 [(𝑫11 +  𝑫22 +  𝑫33 +  𝑫44)𝜆𝑥𝜆𝑦 + ( 𝑫12 +  𝑫34 + 4𝜌0𝑎0𝑨𝑛Δ[𝜆] 𝑈/𝐿𝑥) 𝜆𝑥
2𝜆𝑦 +

( 𝑫13 +  𝑫24)𝜆𝑥𝜆𝑦
2 +   𝑫32𝜆𝑥

2 +  𝑫23𝜆𝑦
2 + ( 𝑫21 +  𝑫43)𝜆𝑥 + ( 𝑫31 +  𝑫42)𝜆𝑦 +

 𝑫14𝜆𝑥
2𝜆𝑦

2 +  𝑫41] 𝒒1 = 𝟎  



                           (9) 

3.  RESULTS 

 

First a validation with the reference case proposed by J.W. Miles in [7] is performed. The 

travelling wave approach proposed by Miles is first described, being not coincident to a 

classic Piston Theory. The same concepts and mathematical derivations followed in the 

previous section are used here for a coherence with the reference result described in [7]. 

 

Then, the sound transmission for a specific turbulent boundary layer model, the Cockburn 

– Robertson [14], is compared for a purely structural case and when aeroelastic effects 

are taken into account using the Piston Theory. 

 

3.1 Validation: Bending Waves with Flow 

 

J.W. Miles, in [7],  discussed the flutter of a plane isotropic infinite panel in a two-

dimensional compressible flow [7]. As furtherly discussed by Dugundji, [6], he utilizes 

an axis system which is fixed to the air at rest, and considers the infinite panel to be 

moving with velocity U in the negative X direction. The Equation of motion is: 

 

                              (10) 

 

where D is the bending stiffness of the plate, m the mass density per unit area and ∆𝑝 the 

self-excited pressure distribution. The solution of Equation 10 leads to an expression of 

the bending wave speed relative to the panel (c+U): 

 

                           (11) 

 

where 𝜇 represents the mass density ratio (for a one-sided flow), 𝜆 the structural 

wavelength and 𝑐0 the wave speed in absence of flow [6,7]. Dynamic instability 

(travelling flutter condition) occurs for a wave speed equal to: 
 

                                                        (12) 

 

The variation of flutter speed with the wavelength can be thus investiated since both the 

mass density ratio and the wave speed are functions of the wavelength [6,7]. 

 

The same test-case is reproduced using the method described in Section 2. A 2mm-thick 

aluminium infinite plate is studied. Within the periodic cell framework, a 2mm cube, 

representing the homogenised cell of the aluminium plate, is modelled using three 

SOLID45 elements in ANSYS. The resulting wave speed (bending waves) of the panel, 

for a 300 m/s flow, is compared to the one calculated using the travelling wave approach 

of Miles in Fig. 2.   

𝑫 = [ 𝑲 −  𝜔2𝑴 − 𝜌0𝑎0𝑨𝑛Δ [𝑖𝜔 + 𝑈/𝐿𝑥] ] 

𝐷 𝜕4𝑤
𝜕𝑥4⁄ + 𝑚(𝜕𝑤

𝜕𝑡⁄ − 𝑈 𝜕𝑤
𝜕𝑥⁄ )

2

= ∆𝑝 

𝑐 + 𝑈 =
1

1 + 𝜇
[ 𝜇𝑈 ± √(1 + 𝜇))𝑐0

2 − 𝜇𝑈2 ] ; 

 

𝜇 =
𝜌0𝜆

2𝜋 𝑚
; 𝑐0 =  √

𝐷

𝑚

2𝜋

𝜆
  

𝑐 + 𝑈 =
𝜇𝑈

1 + 𝜇
 



 

Figure 2 – The structural bending wave speed in presence of a 300 m/s flow on one side, 

modelled using the Piston Theory. The flutter condition is also reported in black.  

 

The present approach (WFE + Aeroelastic effects) seems to closely follow the reference 

wave speed from [7], in the frequency regions characterised by dynamic stability. The 

modified quadratic eigenvalue problem in Equation 8 is here solved. The numerical 

solution, differently from the wave approach of Miles, includes different wave type (not 

solely bending). In Figure 3, the dispersion curves of the plate are compared for different 

flow regimes and, again, the present method is accurate in predicting the bending waves 

in the flow regimes of dynamic stability.  

 
Figure 3 – The bending waves in a 2mm-thick aluminium panel for different flow regimes.  

O (blue): Present Approach; -- (red): Reference [7]; -.- (black): Analytical bending waves in 

absence of flow.  

 

The more the flow speed increases, the more the effect of the flow on the structural waves 

is evident in a larger frequency range. The effects, as expected, seem to increase the 

wavenumber component of the bending waves, thus making the structure less stiff for 

fixed frequency. Moreover, coherently with the physics of the problem, the wavenumbers 



of the “affected” waves, return to the same values of the purely structural waves (no flow), 

at higher frequencies. 

 

3.2 The Induced Noise by Supersonic TBL with Aeroelastic Effects 

 

An immediate application of the presented approach is related to the calculation of the 

sound transmission. While the wavenumbers are to be derived from the eigenvalue 

problem, when the target is the dispersion curves, these can be imposed within a weighted 

integration in the wavenumber domain, to simulate a general load acting on the structure, 

by means of surface waves. This method is presented by the authors in [12]. 

 

The Cockburn-Robertson model, representing an external supersonic turbulent boundary 

layer (TBL), is considered and, as showed in Section 2, the Piston Theory is used for the 

self-induced component of the total load. This model is semi-empirical and obtained from 

measurements on spatial vehicles, thus is predictive only for high Mach numbers. The 

single point spectra of the TBL model investigated is:  
 

    
𝜙𝑝(𝑓)

𝑞∞
2 𝛿

=

〈𝑝2〉

𝑞∞
2

(
𝛿𝑓0

𝑈
)[1+(

𝑓

𝑓0
)

0.9
]

2                                               (13) 

where                                             〈𝑝2〉 ≈ [
0.006

(1+0.14𝑀2)𝑞∞
]

2

                                             (14)  

𝑓 is the circular frequency, 𝑓0 the characteristics frequency (𝑓0 = 0.346
𝑈

𝛿
), 𝑀 is the 

local Mach number, 𝛿 the boundary layer thickness and 𝑞∞ the dynamic pressure.  

Figure 5 shows a comparison between two cases: absence of flow and with aeroelastic 

effects. The test structure is still a 2 mm-thick aluminium finite panel (0.7m x 0.5m) under 

a Mach 1.5 flow on one side. The effects at the lowest frequency bands seem the most 

evident.  

 

Figure 4 – Dispersion curves for the cases studied. Acoustic and aerodynamic coincidences are 

identified with respect to structural flexural waves. 



An effect is also observed just before the acoustic coincidence (6 kHz; Fig. 4). Moving 

to higher frequencies, the aeroelastic effects seem to reduce; the passage around the 

aerodynamic coincidence (8 kHz; Fig. 4) is not influenced. 

 

 
Figure 5 – The transmission loss for a 0.7x0.5 m2 isotropic plate under supersonic TBL 

excitation (Mach 1.5) with and without aeroelastic effects. 

 

A comparison for a higher Mach number (Mach 2.05) is shown in Figure 6. The classic 

aeroelastic effects at low frequency are still important, while the variations, close to the 

acoustic coincidence, are strongly reduced in this case and are almost negligible. 

 

 

 

Figure 6 – The transmission loss for a 0.7x0.5 m2 isotropic plate under supersonic TBL 

excitation (Mach 2.05) with and without aeroelastic effects.  

 



Opposite considerations can be done for the averaged structural velocity of the plate. The 

stronger aeroelastic effects in the low frequency bandwidth are in accordance with the 

classic aeroelasticity of plates [1-8], and still prove that the phenomenon is somewhat a 

low-frequency one. 

 

It is worth to underline how the results presented for the dispersion curves in Fig. 3 are 

not comparable with the ones for the transmission loss in Fig. 5 and 6. In fact, the 

aerodynamic model presented in [7] and used for the comparisons of Fig. 3 is not the 

same Piston Theory model used in Section 3.2. 

 

 

4.  CONCLUSIONS 

  

The effects of one-sided mean flow on the structural elastic waves’ propagation is 

investigated using a wave-based finite element method. While the structural operator is 

studied using a single periodic cell, the aerodynamic one is modelled using the simplest 

aerodynamic theory, valid for supersonic flows: the Piston Theory. 

 

The spatial derivatives (convective terms) are expressed as a function of the elastic waves’ 

propagation constants and the eigenvalue problem, arising from the imposition of the 

periodicity conditions on the structure, is modified with additional damping and stiffness 

terms connected to the flow-induced self-excited excitation components. 

 

First, a validation using the travelling flutter approach, available in the literature, is 

performed. The sound transmission loss of the plate is then calculated and studied when 

aeroelastic effects are taken into account, for different flow regimes. Strong alterations 

are observed in the lowest frequency bands, due to corresponding variations in the 

bending waves’ wavenumbers. 
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