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ABSTRACT 
The characteristics of five strain energy functions for dielectric elastomer (DE) are 
compared. A hyperelastic constitutive model based on second order Ogden strain 
energy function is achieved, which can accurately simulate the nonlinear large 
deformation of VHB4910 DE membrane under different tensile rates. According to 
the established model of DE, the quasi-static and dynamic response equations have 
been developed with regard to the dielectric constant changes of DE. The relation 
between the element's pre-stretch and DC voltage under equal bi-axial loading 
condition is analysed. Its dynamic response is predicted under constant and 
harmonic electrical loads. The results show that DE has an optimal pre-stretch 
rate corresponding to a minimum DC voltage inducing its extreme electro-
deformation. The electrical strength has a significant influence on the dynamic 
response of DE. The vibration frequency of DE actuator diminishes as the 
electrical strength increases. The variation behaves nonlinear. 
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1. INTRODUCTION 

 
As a typical kind of electroactive polymers (EAPs) with distinctive characteristics, 

dielectric elastomer (DE) has been considered as a smart soft material which can 
perform large size and shape deformation under electric loads. As a result, DE has been 
regarded as potentially useful material for actuator application due to its large actuation 
strain together with a fast response and a high energy density, which opens up a broad 
prospect in the fields of bionic mechanical design, aeronautical and space technology as 
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well as vibration and noise control. The dielectric elastomer actuator (DEA), also called 
DE actuating element, consists of a DE membrane sandwiched between two compliant 
electrodes. When an electric field applied between the electrodes, compression in the 
thickness and stretching in the area of DE membrane will be achieved. Compared with 
conventional actuator based on electromagnetic principle such as shape memory alloy 
and electroactive ceramic, DEA has the advantages of low elastic stiffness and high 
dielectric constant which can produce high strain level with large deformation, 
considerable generated force, high energy convention efficiency, lightweight and low-
noise.[1, 2] 

In recent years, a great amount of research has been carried out focusing on the 
electromechanical characteristics of DE, and the main theoretical methods are as 
follow[3]: mechanical property study based on hyperelastic and viscoelastic theory with 
material experiment, electrical deformation response study based on continuum 
mechanics and electrodynamic theory, failure mode and electromechanical instability 
study based on thermodynamic theory and electromechanical behavior based on finite 
element theory. In this paper, a comprehensive theoretical study is conducted in respects 
of DE hyperelastic constitutive relation, quasi-static and dynamic response considering 
DE dielectric constant changes under different electric loads which will provide 
theoretical guidance for the future DEA design. 

 
2. HYPERELASTIC CONSTITUTIVE RELATION 

 
According to the hyperelastic theory [4], DE can be regarded as a Green elastomer 

which has distinctive characteristics of geometric and material nonlinearity. Therefore, 
in order to obtain its nonlinear constitutive relation, we assume DE as a continuous, 
uniform and incompressible ideal material without the consideration of viscoelasticity 
and temperature factors. Based on continuum mechanics [5], the strain energy function 
of DE can be expressed with invariant I in the form of W(I1, I2, I3) or stretch rate λ of 
W(λ1, λ2, λ3). 

When in the state of homogeneous strain as shown in Figure 1, DE’s principal 
stresses are [6]: 

Figure 1 Axes of DE principal stress 
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i i is         1,2,3i                                                 (2) 

where σi is the real stress or cauchy stress in the three main direction,  is is the nominal 

stress or engineering stress, λi is the stretch rate in the three main direction, 
2 2 2

1 1 2 3I      , and      2 2 2

2 1 2 2 3 3 1I         . Besides, if the strain energy 

function is expressed with stretch rate λ, the cauchy stress σi of DE can also be 
expressed as [6]: 
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     (3) 

where p is known as hydrostatic pressure which can be derived from dynamics 
boundary conditions.  

Suppose DE membrane is under the condition of uniaxial tension in the 1 direction 
illustrated in Figure 1, its strain εi and stretch rate λi meet the equation of λi=1+εi. 
Assume the stretch rate in the 1 direction is λ with cauchy stress  , then: 

1/ 2
1 2 3       ， ; 1 2 3= = =0   ，    (4) 

Considering Equation 1, 2 and 4, DE’s stress can be derived as: 
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From Equation 5 and 6, once employing different models of strain energy function 
together with fitting the stress-strain data of uniaxial tension experiment, the material 
parameters of DE constitutive model can be obtained.  

A uniaxial tension experiment of VHB4910 DE membrane was conducted under 
different tensile rates [6]. The calculation results and the experimental data are shown in 
Figure 2 and 3.  

0

0.1

0.2

0.3

0.4

0.5

0.6

s(
M

pa
)

0 1 2 3 4 5 6 7

Experimental data
50mm/min
100mm/min
200mm/min
300mm/min
400mm/min
500mm/min

Figure 2 Comparison of uniaxial tension 
stress-strain curves using different 

constitutive models under tensile rate 
400mm/min 

Figure 3 Comparison of uniaxial tension stress-
strain curves using Ogden(N=2) constitutive 

model under different tensile rates 

From Figure 2, the fitting curves of Neo-Hookean and Mooney-Rivlin model are 
similar straight lines far away from the experimental data which cannot describe DE’s 
nolinear large deformation. The fitting result of Gent model becomes better but still 
cannot predict the deformation precisely. The Yeoh model consisting of three material 
parameters can illustrate the S-shape characteristic of DE membrane as well as the 
constitutive relation when  λ>2, but deviates from the experimental data when λ<2. The 
second order Ogden model fits the whole experimental data which can accurately 
predict the nolinear stress-strain relation of DE.  The constitutive equations and material 



parameters of the five strain energy model under tensile rate 400mm/min are given in 
Table 1. 

Table 1 Material parameters of different constitutive models 
 under tensile rate 400mm/min 

Strain 
Energy 
Model 

Constitutive equation Material parameters 
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μ=0.053Mpa. 

Mooney-
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C10=0.027Mpa, 
C01=-0.267×10-2Mpa. 

Yeoh 
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C10=0.030Mpa, 
C20=-0.269×10-3Mpa, 
C30=3.523×10-6Mpa. 
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μ=0.044Mpa, 
Jm=212. 

 Ogden 
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when N=1, μ1=0.039Mpa, 
α1=2.168; 
when N=2, μ1=0.190Mpa, 
α1=0.959, μ2=0.147×10-3 

Mpa, α2=4.773; 
when N=3, μ1=-0.859×
10-2 Mpa, α1=4.773, 
μ2=0.874×10-2 Mpa, 
α2=4.773, μ3=0.190Mpa, 
α3=0.959. 



From the constitutive equation in Table 1, the Ogden model can be simplified as 
Neo-Hookean model when N=1, α1=2, and as Mooney-Rivlin model when N=2, α1=2, 
α2=-2. Therefore, the Ogden strain energy function can delineate large deformation of 
DE with favorable universality and accuracy. From Figure 3, the hyperelastic 
constitutive model based on second order Ogden strain energy function can accurately 
simulate the nonlinear large deformation of VHB4910 DE membrane under different 
tensile rates. 

 
3. QUASI-STATIC RESPONSE  

 
According to reference [7], when put between two parallel compliant electrodes, DE 

will be subject to a vertical equivalent Maxwell stress Ep : 
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where the negative sign means compression in the vertical direction,  is the vacuum 

dielectric constant usually equals to 8.85×10-12F/m, U is the voltage exerted between 
the two electrodes, z0 is the innitial thickness of DE membrane and εr is the relative 
dielectric constant.  

It is worth noting that the dielectric constant is generally considered unchanged for 
ideal DE in most theoretical analysis. However, recent studies show that the dielectric 
constant of DE changes with stretch rate, excitation frequency, electrode material and 
temperature [8]. A dielectric experiment of VHB4910 DE membrane was conducted to 
consider the abovementioned dielectric constant change [9], where 100Hz of excitation 
frequency and silver grease electrode employed under biaxial equal tension condition. 
Thus the dielectric constant of DE on account of stretch rate is derived: 

 1 24.76 1 0.051 2r                                                 (8) 

In order to analyze the voltage-induced quasi-static response of DEA, the states of 
initial, pre-stretched and electrical deformed are proposed as shown in Figure 4. 

Figure 4 The process of voltage-induced deformation of DE actuating element 
For the pre-stretched state of biaxial equal tension in the 1 and 2 directions, the pre-

stretched stress σpre of DE is: 
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For the electrical deformed state, suppose the planar voltage-induced deformation is 
 and the pre-stretched stress remains constant, thus: 
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Using the achieved constitutive model based on second order Ogden strain energy 
function, the equilibrium equation of DE actuating element is: 
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Therefore, the quasi-static response of DE actuating element can be obtained solving 
Equation 12 under the excitation of DC voltage considering the change of dielectric 
constant. Based on Equation 8 and 12, the quasi-static response of planar DEA is 
calculated as shown in Figure 5 and 6. 

Figure  5 3D graph of planar strain, pre-
stretch and DC voltage 

Figure 6 Contour lines of planar strain 

From Figure 5 and 6, the pre-stretch rate and DC voltage are crucial to determine the 
electrical deformation characteristics of DE actuating element, and a maximum planar 
strain of 100% can be obtained under biaxial equal tension condition. Convenient for 
observation, here are the curves of planar strain and voltage under different pre-
stretches, shown in Figure 7 and 8. 

Figure 7 The curve of pre-stretch and 
voltage of 100% planar strain 

Figure 8 The curves of planar strain and 
voltage under different pre-stretches 

From Figure 7, the curve of pre-stretch and voltage has an inflection point, i.e. there 
is a pre-stretch rate opt

pre  of 2.82 corresponding to a minumum voltage of 6.84kV which 

leads to 100% planar stain. Here we call opt
pre  the optimal pre-stretch rate. From Figure 

8, distinct deformation can be observed with the increase of voltage under different pre-
stretches. The electrical deformation increases with the pre-stretch rate increasing when 



the voltage is less than 7kV, and increases at first and then decreases with the pre-
stretch rate increasing when the voltage is larger than 7kV. 

A comparison is made using the above quasi-static model with the dielectric constant 
remains 4.7, shown in Figure 9 and 10. It can be concluded that the change of dielectric 
constant is a key factor to influence the voltage-induced deformation of DEA. For 
instance, the optimal pre-stretch rate of DE actuating element rises to 3.95 while the 
minimum voltage of 100% electrical strain decreases to 4.58kV without the 
consideration of dielectric constant change. When exerting the same DC voltage, the 
electrical deformation of DE with regard to the change of dielectric constant is less than 
the deformation without the regard to the change of dielectric constant. Moreover, the 
abovementioned deformation difference becomes bigger when the pre-stretch rate 
increases.  

Figure 9 The curve of pre-stretch and 
DC voltage of 100% planar strain 

Figure 10 Comparison of the curves of planar 
strain and DC voltage under different pre-

stretches 
 
4. DYNAMIC RESPONSE  

 
To predict the voltage-induced dynamic response of DE, an dynamic analytical 

model is established as shown in Figure 11 with the size of 2L×2L×2H. The material 
coordinate (X, Y, Z) represents the position of arbitrary point in the DE actuating 
element, while spatial coordinate (x, y, z) indicates the position of any point in the space, 
and the two coordinate system coincide at the center point. Considering geometric 
symmetry, a simplified 1/8 model with the size of L×L×H can be used for calculation. 
Assume the stretch rate in the thickness direction is , the dynamic response of DE 
actuating element can be derived [10]: 
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Figure 11 Dynamic analytical model of DE actuating element 



According to thermodynamic energy theory, the change of Helmholtz free energy of 
DE actuating element equals to the sum of the change of electric field energy and the 
work of inertial force, i.e.: 

VδF=φδQ+δK                                                          (14) 
where F is the Helmholtz free energy per volume, V is the material volume,  and is 
the electric potential and electric charge quantity respectively, and the work of inertial 
force is δK. Owing to electromechanical coupling, the Helmholtz free energy of DE 
actuating element can be obtained using the Ogden model: 
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where λ1, λ2 and λ3 represent the three stretch rates with  λ1=λ2=1/  , λ3 =λ, μi and αi 
are the corresponding material parameters, E0 is the nominal electric-field strength with 
E0=/H and the dielectric constant ε=ε0εr=8.85 × 10-12 × 4.76[1-0.051(λ1+λ2-2)]. 
Besides, the change of electric field energy and the work of inertial force are: 
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Where u=x-X is the displacement vector with acceleration u , material density ρ and 
system volume Ω. Recall Equation 13 on Equation 17: 
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Based on the above analysis, a second order differential motion equation of λ(t) i.e. 
the dynamic response model can be derived: 
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Once given the boundary condition under different loads, the dynamic response of 
DE actuating element can be achieved by solving Equation 19. Based on the above 
dynamic response equation, a numerical analysis is conducted with the help of ode45 
function in Matlab. Here we take VHB4910 DE membrane for example. Assume the 
initial condition is λ(0)=1.0 and (0) 0  , namely exerting voltage from the original 
size. The constitutive model used in the numerical analysis is the abovementioned 
second order Ogden model with material density ρ=960kg/m3. 

When under the nominal electric field strength of 10kV/mm, 25kV/mm and 
31.3kV/mm with H=0.5mm and L=5mm, the dynamic response of DE actuating 
element can be achieved, shown in Figure 12 and 13. 

From Figure 12, electric-field strength is the key factor to determine the frequency 
and amplitude of DE actuator. The vibration frequency of DE actuator diminishes as the 
electrical strength increases. The amplitude enlarges and frequency decreases with the 
increase of electric-field strength, and maximum amplitude of 49% can be calculated 
with the critical electric-field strength of 31.3kV/mm. In addition, because of the 
material viscoelasticity, electromechanical interaction and other factors, the relation 
between vibration amplitude and electric field strength presents nonlinear as shown in 
Figure 13. When the electric field strength increases, the gradient of the curve of the 
vibration amplitude and electric field strength increases, i.e. the speed of the increasing 
amplitude is faster. When the electric field strength comes to the limited value, 51% 



electrical deformation will be obtained, and electromechanical instability will occur if 
the electric field strength keeps increasing. 

E0=15.0kV/mm
E0=25.0kV/mm
E0=31.3kV/mm

×10-3

Figure 12 Dynamic response under 
different electric loadings 

Figure 13 Curve of the vibration 
amplitude and electric field strength of DE 

actuating element 
When the electric-field strength varies with the time, the dynamic response of DE 

actuating system is more complicated. Assume harmonic nominal electric-field strength: 
E0=EAsin2πft                                                      (20) 

where EA is the amplitude of electric-field strength and f is the frequency. With 
H=0.5mm and L=5mm, the frequency-amplitude response in the frequency range of 
(1Hz, 1kHz) can be achieved when EA=20kV/mm and 25kV/mm, shown in Figure 14 
and 15.  

Figure 14 Frequency-amplitude 
response of DE actuating element under 

EA=20kV/mm 

Figure 15 Frequency-amplitude response 
of DE actuating element under 

EA=25kV/mm 
The Figure 14 and 15 show that peak values appear in the curve of frequency-

amplitude response with EA increasing. For instance, the peak values of 205Hz, 303Hz 
and 553Hz are obtained when EA=20kV/mm. In addition, the frequency-amplitude 
response is out of convergence in the range of （490Hz, 550Hz）when EA=25kV/mm, 
which indicates that the excitation frequency is close to the inherent frequency of DE 
actuating element and resonance is likely to happen. 

For the frequency range near the resonance, the vibration of the system is dramatic 
but stable as you can see in Figure 16 and 17. Furthermore, compared with constant 
electrical loads, the amplitude of DE actuating system grows significantly under 
harmonic electrical loads with periodic characteristics. 

It is known that reference [11] proposed a dynamic model based on Neo-Hookean 
model (μ=0.053Mpa) without the consideration of the change of DE dielectric constant 
(εr=4.7). The following comparison is made between the model in this paper and [11] as 
shown in Figure 18 and 19. The difference is obvious to find in Figure 18 and 19 with 



the amplitude-nominal electric field strength and frequency-amplitude response of DE 
actuating element. Therefore, the above dynamic analytical model based on second 
order Ogden constitutive model considering the change of dielectric constant can 
predict the dynamic response of DE actuator more precisely. 

 

t[s]

Figure 16 Dynamic response under 
EA=25kV/mm, f=480Hz 

Figure 17 Dynamic response under 
EA=25kV/mm, f=560Hz 

Figure 18 Comparison of dynamic 
response under different electric loadings

Figure 19 Frequency-amplitude response of 
DE actuating element under EA =16kV/mm 

 
5.  CONCLUSIONS 
 

The quasi-static and dynamic responses of dielectric elastomer actuator under 
different electrical loads are achieved in this paper. First, the characteristics of five 
strain energy functions for VHB4910 DE membrane are compared. A hyperelastic 
constitutive model based on second order Ogden strain energy function is achieved, 
which can accurately simulate the nonlinear large deformation of VHB4910 DE 
membrane under different tensile rates. Second, according to the established model of 
DE membrane, the quasi-static response equation is developed considering the changes 
of DE dielectric constant. The results show that under the condition of equal bi-axial 
tension and DC voltage, DE has an optimal pre-stretch rate corresponding to a 
minimum DC voltage inducing its extreme electrical deformation. Besides, the electrical 
deformation of DE can be improved as pre-stretch rate increases in the low voltage 
range but things are different in the high voltage range. Third, the dynamic response 
equation is obtained with regard to the dielectric constant changes under constant and 
harmonic electrical loads. It is worth noting that the vibration frequency of DE actuator 
diminishes as the electrical strength increases and the variation behaves nonlinear. 
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