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ABSTRACT 

In many common situations concerning the vibroacoustics of built-up structures, a 

plate gets excited at a limited region where it is connected to further structural 

elements, like beams or other supporting elements. To avoid the transmission of 

vibrations to the plate one would typically resort to elastic junctions. However, that 

is not always feasible and, even if it was, they may not provide enough isolation. It 

is proposed herein to increase the latter by resorting to ring-shaped ABH 

configurations consisting in, at least, one annular strip with a power-law decaying 

profile in the radial direction. The ring-shaped ABH strip is used to surround the 

external excitation area and prevent the transmission of vibrations to the rest of the 

plate. Designs including radial stiffeners are also presented to avoid excessive 

structural weakening. The numerical simulations carried out using a Rayleigh-Ritz 

approach with a Gaussian expansion for the flexural displacement field, show that 

the ring-shaped ABH constitute an efficient way to enhance vibration isolation in 

plates. 
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1. INTRODUCTION 

The ABH effect in beams and plates can be achieved with a tailored wedge, or 

indentation, whose thickness h follows a power-law profile (h=εxm), which reaches a zero 

value at the tip (x=0), see [1]. Flexural waves traveling in the wedge will expend an 

infinite amount of time to reach the boundary, resulting in a zero reflection coefficient.  



 

Figure 1 (a) 3D scheme of proposed annular ABH with harmonic force exerted at its center, (b) cross sectional view 

of the annular ABH plate, with viscoelastic layers located in the ABH center. 

 

In practice, however, a truncation thickness will always exist due to manufacturing 

limitations, which would result in substantial wave reflection. To a good extent, this is 

usually remedied by placing viscoelastic layers [2], or passive constrained viscoelastic 

layers [3], at the wedge tip or indentation center, among other options [4,5].  

To date, most ABH designs for plates consist in circular cuneate indentations 

[6,7,8,9], or rectangular ones with parabolic profiles [10,11]. Very recently, annular 

ABHs to reduce propagative Bloch-Floquet waves in periodically supported cylindrical 

shells have been also suggested [13]. It is to be mentioned that arrays of circular ABHs 

in plates have been shown to exhibit remarkable properties, which make them not only 

suitable for vibration suppression, but also for further applications such as energy 

harvesting [14], or wave manipulation [15]. 

In this work, we propose the design of ring-shaped ABHs, for vibration isolation 

in plates. In many built-up structures, plates are excited in a finite region, e.g., a beam-

plate connection, and standard elastic junctions may not provide enough isolation. Ring-

shaped ABHs could be used to surround the excitation area and dissipate its energy thanks 

to the ABH effect. Several configurations of ABHs have been tested, which include the 

insertion of stiffeners to avoid structural weakening, and the combination of several 

concentric ABHs to further reinforce isolation. The performance of the ABHs have been 

characterized through the Rayleigh-Ritz method, using Gaussian functions to expand the 

transverse displacement [3,9]. 

 

2.  RING-SHAPED ABH MODELLING 

 

2.1 ABH geometry 

A 3D view of the proposed ring ABH structure for a plate is shown in Figure 1a, 

with the excitation point located at its center, where we establish the origin of coordinates 

O. The considered plate has dimensions 2a×2a×h and its geometric parameters are 

specified in Figure 1b.  As observed, the inner radius is designated by ρin and the outer 

one by ρout. Hence, the width of the ring ABH is given by 2rabh=ρout-ρin, with the ABH 

center being at a radial distance ρc=(ρout+ρin)/2. The radial power law profile for the ABH 

thickness is h(ρ)=ε|ρ-ρc|
m+h0 (m≥2). Moreover, an annular viscoelastic layer with uniform 

thickness hv, width 2rv and centerline radius ρc, is attached to the ABH to dissipate energy. 

Besides, note that instead of being a continuous ring, the ABH has been reinforced with 

some stiffeners to prevent structural weakness.  

 

 

 

 



2.2 Admissible basis function 

The ABH behavior has been investigated by means of a semi-analytical approach, 

in the framework of the Rayleigh-Ritz method. We consider the Love-Kirchhoff theory, 

which allows one to express the displacement field in the ABH plate as, 
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where w is the transverse displacement. We expand the latter by a set of basis functions 
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with φi(x,y) representing the ith basis function and ai(t) its corresponding weight 

coefficient, which has to be determined. a and φ in Equation 2 are column vectors with 

entries ai(t) and φi(x,y). With the help of the Kronecker product, φ can be expressed as 

the combination, 
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where α and β respectively represent column vectors,  
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with αi(x) being the ith basis function in the x direction and βi(y) the ith basis function in 

the y direction. 

In this paper, Gaussian functions are chosen for αi(x) and βi(y), following the 

developments in [3,9]. Analogous to what occurs when employing wavelet transforms 

(see e.g., [16,17]), one can build a set of Gaussian basis functions through dilations and 

translations.  The elements in Equation 4 become 
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The indices j, p are scaling parameters that respectively squeeze or stretch the original 

function in the x and y directions. Similarly, k and r stand for translation parameters to 

move the functions in the x and y directions. 

 

2.3 Equations of motion 

 The equations of motion for the plate with a ring ABH indentation can be obtained 

as follows. We start writing the Lagrangian operator from the kinetic and potential 

energies. The kinetic energy Ek  is given by 
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where ρ denotes the density, and [-a, a] and [-b, b] the integration limits in the x and y 

directions. Likewise, the potential energy Ep can be expressed as 
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with v standing for the Poisson ratio, D(x, y) for the local flexural rigidity and E* =E(1+jη) 

for the complex Young’s modulus with material loss factor η.  

On the other hand, the work done by the external force onto the system is 
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From Equations 6 to 8, we can proceed as usual to construct the Lagrangian 

function,  
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The Euler-Lagrange equations 0
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 will then provide the linear matrix 

equations of motion, 
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Under harmonic regime, the force and response vectors can be written as  
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where F̂  and Â  respectively denote the amplitude vectors of the external force and the 

response. Substituting Equation 11 into Equation 10 yields 
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Equation 12 has been used to analyze the various ring-shaped ABH configurations. In 

practice, Equation 12 is first obtained for the bare plate and then, the matrix replacing 

strategy of [9] is applied to embed the ABHs in it.  
 

3.  NUMERICAL RESULTS 

In this section, we present the performance of three different types of ring-shaped 

ABHs concerning vibration isolation. These are an ABH made of a ring containing small 

conventional circular ABHs, a continuous ring-shaped ABH and a stiffened ring-shaped 

ABH. Those will be respectively referred to as the circle-ring ABH, the annular ABH 

and the stiffened-annular ABH. Two main aspects will be examined: i) The effects of 

considering several concentric ABHs with identical width; ii) The effects of splitting a 

big annular ABH into smaller ones.  

The geometrical and physical parameters of the ABHs used in the simulations to 

be presented in subsequent sections are given in Table 1. 

 
Table 1 Material and geometrical parameters of the proposed ABH models 

Material parameter                               Geometrical parameters 

Ep=210 GPa h=0.01 m hv=0.0025 m 

ρp=7800 kg/m3 ε=3.3879 1/m rv=0.0415 m 

ηp= 0.005 a=b=0.5 m  

vp= 0.3 h0=0.0005 m  

Ev= 5 GPa ρin=0.069 m  

ρv=7800 kg/m3 ρout=0.175 m  

ηv= 0.5 ρc=0.122 m  

 

 

Figure 2 Geometries for the (a)-(c) The circle-ring ABHs, (d)-(f) annular ABHs, (g)-(i) rigid annular ABHs. 



 

 

3.1 Increasing the number of concentric ABHs 

The tested configurations in this section are illustrated in Figure 2. For each of 

them, we will compute the transmission loss (TL) between the vibration of the excitation 

area surrounded by the ABH (interior of the most inner red dashed circle in Figure 2), and 

the vibration of the receiver area (exterior of the most outer red dashed circle in Figure 

2).  

The TL is computed as the logarithmic quotient between the mean squared 

velocity at the excitation area and that of the receiver area, namely, 
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The first ABH is that of Figure 2a, which consists in a ring arrangement of seven 

conventional circular ABH indentations. For further isolation, in Figures 2b and 2c we 

consider the addition of outer concentric circle-ring ABHs. Figure 2b contains an 

additional layer with fourteen circle-ring ABHs, while a third layer is also included in 

Figure 2c, with twenty-one supplementary ABHs.  

 

 
 

Figure 3 Transmission loss (TL) for (a) circle-ring ABHs, (b) annular ABHs, (c) stiffened-annular ABHs and (d) 

comparisons between ABHs for the three concentric ring cases. Vertical lines indicate the diameter and smoothness 

cut-on frequencies, fr=444 Hz and fε=1615 Hz. 



 

Figure 4 (a) One big annular ABH, splitting it into (b) 2 and (c) 3 smaller annular ABHs. 

The second set of ABHs is shown in Figures 2d to 2f. Figure 2d presents an 

annular ABH, which is respectively complemented with one and two additional 

concentric ABHs in Figures 2e and 2f, analogously to what was done for the circle-ring 

ABH. Given that a continuous annular ABH may result in a substantial weakening of the 

structure, in Figure 2g we have included some stiffeners to the annular ABH. Figures 2h 

and 2i contain two and three concentric annular-stiffened ABHs. Note that to reinforce 

isolation, the stiffeners at the different concentric ABHs have been placed at different 

angular locations.  

The TLs for the nine cases in Figure 2 are plotted in Figure 3, where we have also 

displayed the ABH diameter and smoothness cut-on frequencies as vertical lines. The 

ABHs effect takes place well beyond the second one. The results for the circle-ring ABHs 

are shown in Figure 3a, those of the annular ABHs in Figure 3b and those of the stiffened-

annular ABHs in Figure 3c. As observed in all figures, the TL increases with the number 

of concentric ABHs, as one could expect. However, in the case of circle-ring ABHs 

(Figure 3a), the improvements are not significant if compared to the uniform plate, even 

when considering three concentric rings. As opposed, the annular ABHs perform 

remarkably well in mid to high frequencies (TL up to 35 dB between 2000Hz and 

4000Hz, see Figure 3b). The stiffened-annular ABHs in Figure 3c also work well, but at 

somewhat higher frequencies and with less intensity (TL up to 20 dB between 3500 and 

4500 Hz). For a clearer comparison, the TLs for the three concentric ABHs of Figures 2c, 

2f and 2i are presented in Figure 3d. Clearly, the annular ABH is by far the best option, 

followed by the stiffened-annular ABH. The effect of the stiffeners is very noticeable, as 

seen in the figure. Besides, it is also apparent that the circle-ring ABH should be discarded 

because it only slightly improves the behavior of the uniform plate at some frequencies, 

while at others it even performs worse.  

 

3.2 Effects of annular ABH dimensions 

From the precedent discussion, it follows that the annular ABHs constitute the 

best option in terms of vibration isolation. Therefore, we will next focus on them and 

complement the previous results considering a case in which we have a fixed annular 

surface where to place the ABH. The situation is illustrated in Figure 4. Figure 4a contains 

a single, large, ABH which becomes split in two ABHs in Figure 4b, and in three ABHs 

in Figure 4c. Note that the configuration of Figure 4c coincides with that of Figure 2f. 

Besides, observe that the splitting procedure will result in ABHs of steeper profile, thus 

augmenting the cut-on smoothness frequency (see e.g. [8,9]). Those are respectively 

given by 157 Hz, 630 Hz and 1615 Hz for the ABHs in Figures 4a, 4b and 4c.   

As illustrated in Figure 5, the TL of the single annular ABH becomes stable (few 

oscillations) once surpassed about three times its smoothness frequency. The TLs for the 

2 and 3 ABHs show an analogous behavior. This means that for a fixed ABH area, 

increasing the number of ABHs does not result in a big difference beyond the highest cut-

on smoothness frequency. However, the performances of the three ABHs are very 



different below the cut-on frequencies. The reason for that is a combination of the ABH 

effect together with the changes in the plate’s rigidity, due to the ABH indentations. The 

steeper ABHs tend to increase the reflection the out-going waves from the excitation area, 

augmenting its vibration level, and therefore the TL values at low frequencies. The TLs 

can be considerably large: up to 35 dB between 2000 and 4000 Hz for the three ABH 

configuration (as already observed in Figures 2b and 2d), and up to 25 dB between 500 

and 1200 Hz for the two ABH arrangement.  

 

 

Figure 5 Transmission losses (TL) when splitting 1 big annular ABH (fε=157 Hz) into 2 (fε=630Hz) and 3 (fε=1615 

Hz) ABHs. 

 

4.  CONCLUSIONS 

This paper suggests the design of ring-shaped ABHs surrounding an excitation 

area on a plate for vibration isolation. Three different types of ABHs have been simulated 

consisting of ring distributions of circular ABHs, annular ABHs and stiffened annular 

ABHs. The simulations have been carried out by means of a semi-analytical method that 

uses Gaussian basis functions to decompose the ABH plate displacement field, under the 

framework of the Rayleigh-Ritz method. The performance of the ABHs has been 

characterized computing the transmission loss (TL) between the vibration at the plate 

excitation area and that at the plate receiver area, aft the ABH.   

Two critical aspects have been tested: the effect of increasing the number of 

concentric ABHs and that of splitting a big annular ABH into smaller ones. The former 

shows the inclusion of more ABHs helps increasing the TL, as expected. Annular ABHs 

exhibit the best behavior. The inclusion of stiffeners on them, however, significantly alter 

their performance, so they should be carefully designed. Finally, the circle-ring ABHs 

can be discarded because they show a similar behavior to that of a uniform plate. In what 

concerns splitting an annular ABH into several ones, the results show that this has no 

effect beyond the cut-on smoothness frequency of the smaller ABH, while substantial 

differences can be appreciated below that. Those are partially attributed to the ABH effect 

and partially to back reflections to the excitation area, when increasing the slope of the 

ABH profiles.  
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