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ABSTRACT 
In most engineering applications, the vibration isolation problem, or vibration 
transmissibility, is studied using the one-DOF model due to its simplicity.  In reality, 
however, if the vibration isolation system is mounted on a non-rigid structure or 
foundation, then it leads to a two-DOF vibrating system.  A quite common case is a 
piece of rooftop equipment, such as fans and cooling towers, mounted on either 
springs or neoprene pads, because the roof structure itself is flexible and introduces 
the second degree of freedom.  Occasionally, a piece of mechanical equipment is both 
internally and externally isolated which is also a two-DOF vibrating system.  A 
floating floor and the structural floor also make a two-DOF system.  This paper 
discusses the theoretical models of vibration transmissibility of two-DOF vibrating 
systems.  A literature review is provided and errors in some references are corrected.  
Finite-element-models are developed to verify the theoretical analysis. 
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1. INTRODUCTION 

Vibration transmissibility (VT) includes two types of problems: (1) response of a 
vibrating system due to the base excitation, and (2) vibration isolation.  The purpose of 
vibration isolation is to reduce the vibration energy transmitted from a vibrating system 
to the structure or foundation, which further reduces possible damage to the structure as 
well as the acoustical radiation of the structure.   

Various vibration isolation systems, such as neoprene pads, springs, dashpot 
dampers, composite high damping materials, etc. have been successfully used in different 
applications.  In most engineering applications, the vibration transmissibility is modelled 
using the one-DOF (degree-of-freedom) model due to its simplicity. By assuming viscous 
damping, the vibration transmissibility is given by  
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where r is the excitation frequency to natural frequency ratio / nω ω , and ζ  is the 
damping ratio.  The goal of vibration isolation is to keep VT < 1.  

  In reality, however, many vibration transmissibility problems should be 
modelled as two-DOF, or even higher DOF, systems.  For example, a vibration isolation 



system is mounted on a non-rigid structure or foundation.  A quite common case is a piece 
of rooftop equipment, such as fans and cooling towers, mounted on either springs or 
neoprene pads, because the roof structure itself is flexible and introduces the second 
degree of freedom.  Occasionally, a piece of mechanical equipment is both internally and 
externally isolated which is a two-DOF vibrating system.  For example, fans and motors 
in an air-handling-unit are internally isolated and the whole unit is externally isolated as 
well.  A floating floor along with the structural floor also makes a two-DOF system.  

 

 
Figure 1. Model of two-DOF vibrating system.  

A two-DOF vibrating system is illustrated in Figure 1.  Two masses are m1 and 
m2, respectively. k1 and k2 are stiffnesses.  In this paper viscous damping is assumed.  An 
external harmonic force f1 = F0 ejωt is applied to m1.  The two displacement responses are x1 
and x2 in the time domain. The external force f1 is transmitted to m2 and base, such that 

( ) ( )2 1 1 2 1 1 2f k x x c x x= − + −    and base 2 2 2 2f k x c x= +  .  Therefore, there are two vibration 

transmissibilities: ( ) ( )2 1F Fω ω  and ( ) ( )base 1F Fω ω  in the frequency domain.  If m1 

is the vibrating machine to be isolated and m2 is the non-rigid structure, then 
( ) ( )2 1F Fω ω  is the main concern.  In this paper the two-DOF vibration transmissibility 

is defined as    
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The theoretical models of vibration transmissibility of two-DOF systems have 
been studied by many researchers.  Soliman and Hallam studied the vibration isolation 
on non-rigid foundations [1].  They derived the formula of vibration transmissibility of 
undamped two-DOF systems.  Although they presented plots of vibration transmissibility 
with three different damping ratios, they did not derive the theoretical formula and they 
assumed a very special case k1 = k2 and c1 = c2 in those plots.  It is also worth mentioning 
that in this 1968’s paper, the critical damping was defined differently 2 2cc mk= , while 

nowadays the critical damping is defined as 2 2c nc mk mω= = .  The ASHRAE 
Handbook includes the formula of two-DOF vibration transmissibility [2].  However, the 
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formula does not include damping, either.  Rivin derived the second vibration 
transmissibility ( ) ( )base 1F Fω ω , again, for undamped two-DOF systems [3] (pp.48-61).   

Many researchers studied tuned-mass damper and the effects on vibration 
transmissibility [4] - [6].  A main vibrating system with a turned-mass damper is a two-
DOF system.  However, the configuration is different than Figure 1.  In Rusicka’s model, 
m1 is the added turned-mass damper while m2 is the vibrating machine [5].  The driving 
force is f2 and the foundation was assumed rigid, so the vibration transmissibility is 
actually ( ) ( )base 2F Fω ω .   

Unfortunately, a literature review did not find the theoretical formula of damped 
two-DOF vibration transmissility.  In addition, due to the complexity of such a two-DOF 
problem some researchers made mistakes or misused some of the formulas.   

For example, in the first edition of the well-known Noise and Vibration Control 
edited by Beranek and Vér, Dr. Eric Ungar presented the formula of undamped two-DOF 
vibration transmissibility (Eq. 11.10 on page 438) [7].  There is a misprint regrettably, 
and the same misprint remains in the second edition of 2006 (Eq. 13-10 on page 566) [8].  
Fortunately, the formula to calculate two resonance frequencies and the associated figure 
are correct.  The details are explained in Section 2.2 of this paper.   

Waters and Sherren discussed the design of floating floor [9].  They cited a 
formula from Reference [6] and treated it as “vibration transmissibility”.  However, the 
formula is actually the magnification factor of a vibrating system with a tuned-mass 

damper X
F k

, where F is the force applied to the main mass (m2 in Figure 1) and X is the 

displacement response of the same mass.  In addition, they sadly copied the formula 
wrong where the right bracket in the denominator’s first term was placed at wrong 
position.   

In this paper the theoretical formula of damped two-DOF vibration 
transmissibility is derived for the first time.  Different cases are presented with detailed 
discussions.  A finite element model is developed in ANSYS to verify the theoretical 
analyses.  A case study of floating floor design is also presented.   

  
2. THEORETICAL MODELS 
 
2.1. Derivation of the theoretical formula with damping 

Equations of motion for a damped two-DOF vibrating system shown in Figure 1 
can be easily obatined: 
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 and plug back in Eq. (3), we have 
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where Z is the impedance matrix.  Its determinant can be calculated as below.   
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In the frequecny domain, the force transmitted to m2 is  

 ( ) ( )( )2 1 2 1 1F X X k j cω ω= − + , (6) 

where the two displacements can be calculated by using the Cramer’s rule: 
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Plug Eqs. (5) and (7) in Eq. (6), then the force transmitted to m2 is 
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The two-DOF vibration transmissibility is then 
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Dividing both the numerator and denomintor by  1 2k k and after lengthy simplification, 
the theoretical formula of damped two-DOF vibration transmissibility is obtained: 
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While Eq. (9) includes six parameters (m1, m2, k1, k2 c1, and c2), Eq. (10) only has four 
parameters (μ, β, ζ1, and ζ2).      
 Similarly, the force transmitted to base is  
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Then the second vibration transmissibility is 
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which can be further simplified as  
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 This paper focuses on the two-DOF vibration transmissibility given by Eq. (10).  
m1 is the vibrating machine to be isolated and m2 is the non-rigid structure.  A few cases 
and details are discussed in the following sections.  Eq. (13) can be used in other 
appropriate applications.  For example, the vibration of a parking garage (base in Figure 
1) is transmitted through columns (k2 and c2) to the structural floor above (m2) and further 
to the system (m1) that is to be isolated.  Although the actual situation is more complicated 
since the bending vibration of columns should also be included in the parking garage 
vibration, such a simplified model can approximate the vibration isolation in the vertical 
direction to a certain extent.    

2.2. Case A: ζ1 = ζ2 = 0 
 

This is the simplest case where damping for both degrees of freedom is ignored.  
Vibration transmissibility Eq. (10) is simplified as   
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As explained in Section 1. Introduction, a few references derived this formula.   
 

Remark #1. Obviously, when the frequency ratio 2 11r β ω ω= = , in another 

word, when the excitation frequency is 2ω ω= , the numerator of Eq. (14) becomes zero.  
It means the vibration energy does not transmit to the non-rigid structure at this specific 
frequency.  Therefore, the system can be tuned accordingly in order to achieve very low 
vibration transmissibility.  

  



Remark #2. The two resonance frequencies are where the transmissibility 
approaches infinity.  Unlike the damped systems, there are no local maxima in Eq. (14), 
so setting the derivative of Eq. (14) to zero will not lead to real roots.  Instead, the two 
resonance frequencies are calculated by setting the denominator of Eq. (14) to zero: 
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of 4β  is positive, and the discriminant is ( ) ( )2 222 1 4 1 0µ µ∆ = − − + <  . Therefore, the 

quantity of square root is always positive and less than ( ) 21 1µ β+ + .  In another word, 

there are two distinct positive roots: 
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It is interesting to observe that the smaller root is less than unity and the larger root is 
greater than 1/ β .  It implies that the resonance frequencies of a two-DOF vibrating 

system are lower than 1ω and higher than 2ω , respectively.  When µ is small, the two 
roots are very close to unity and 1/ β , which means the two resonance frequencies are 

very close to each individual DOF’s natural frequencies 1ω and 2ω .  
In addition, in order to study the effect of mass ratioµ on the two resonance 

frequencies, take the derivative of Eq. (15) with respect to µ : 

 

( )
( )

1 2

1 2

2

22 2
,

,

1 1
1

1 1 4

4
r r

r r

dr
d r

µ β

µ β β

µ

+ +
±

 + + − = .  (16) 

It is easy to show that for 
1r

r (the one with negative sign), 
1

0rdr dµ < . So the first 

resonance frequency decreases with an increase in µ .  On the other hand, 
2

0rdr dµ >  

(the one with positive sign), so the second resonance frequency increases with an increase 
in µ .  Therefore, the two resonance frequencies would further separate (the smaller one 

gets smaller and the larger one gets larger) when the mass ratio 1 2m mµ =  increases.   
 

Remark #3. It was mentioned in Section 1. Introduction that there is a misprint in 
References [7] and [8].  The vibration transmissibility is printed as
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comparison with Eq. (14) indicates that the second term of the demoninator should be
2R M .  So the correct formula should be  
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2.3. Case B: ζ2 = 0 
 

If the non-rigid structure’s damping is negligible, 2 0ζ = , then the vibration 
transmissibility Eq. (10) can be simplified as  
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Figure 2 illustrates vibration transmissibility curves of a specific μ-β combination: 
μ = 2, β = 0.5 with different damping ratios.  Some interetsting observations and remarks 
are discussed as followes.  

 

Figure 2. Vibration transmissibility curves of μ = 2, β = 0.5.  

Remark #1: Similar to Remark #1 of the last section, when 2 11r β ω ω= = , the 
numerator of Eq. (17) becomes zero, then the transmissibility is zero.  This is independent 
of damping.  This is shown in Figure 2 where all the curves approach zero at r = 2.  
Therefore, very effective vibration isolation can be obtained at frequencies close to 2ω .  
 

Remark #2: It is quite interesting to observe that all the curves cross two points P 
and Q, independent of the damping ratio.  These points are similar to the point at 2r =  
for the one-DOF vibration transmissibility. These two points can be solved as follows.  

Inspired by Den Hartog’s research on tuned mass damper [4] (pp. 93-106), Eq. 
(17) can be re-written as  
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where 2 21A rβ= − , ( ) 2 2 2 41 1 1B r rµ β β = − + + +   , and ( ) 2 21 1C rµ β= − + .  The 

vibration transmissibility is independent of damping ratio 1ζ  when 
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not points P and Q.  
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For μ = 2 and β = 0.5, the two points are at rP = 0.9364 and rQ = 3.0204, which agree with 
Figure 2.   
 

Remark #3: To find the two resonance frequencies, differentiate Eq. (17)  and set 
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= . After quite rigorous algebra, the two resonance frequencies can be 

obtained by solving a 10th order polynomial: 
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For μ = 2 and β = 0.5, the resonance frequencies of different damping ratios are listed in 
Table 1.  These values are the positive real roots of such a 10th order polynomial.  

Table 1. Resonance frequencies of the system shown in Figure 2.  
 rp1 rp1 

ζ1 = 0 0.7923 2.5243 
ζ1 = 0.05 0.7925 2.5370 
ζ1 = 0.1 0.7930 2.5754 
ζ1 = 0.3 0.8022 2.9263 
ζ1 = 0.5 0.8336 3.3684 
ζ1 = 1 1.0072 4.3099 



Figure 3 shows a few cases of μ-β combinations.  Each plot includes various 
damping ratios.   

 

Figure 3. Vibration transmissibilities of different μ and β combinations.  

Remark #4: Figure 4 illustrates the effect of the mass ratio μ.  Similar to Remark 
#2 of  Section 2.2 (see Eq. (16)), as μ increases, the two resonance frequencies are more 
separated in frequency, leaving a wide frequency range of low vibration transmissibility 
between the two peaks.  On the other hand, if 0µ → , denominator can be simplified as  
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Then Eq. (17) degrades to 1-DOF vibration transmissibility.   

 

Figure 4. Effect of the mass ratio.   
 

It is also observed in Figure 4 that the transmissibility curves approach the one-DOF 
curve as asymptote at high frequencies.  Take the limit of Eq. (17) as r →∞ : 
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It is exactly the same limit of Eq. (1) as r →∞ .  In another word, the transmissibility 
decreases at a rate of 20 dB per decade at high frequencies.  This conclusion is quite 
different from the transmissibility to the base.  Taking the same limit of Eq. (13) indicates 
that the vibration transmissibility from m1 to base decreases at a rate of 40 dB per decade 
at high frequencies.   
 
2.4. Case C: ζ1 ≠ 0 and ζ2 ≠ 0 

This is the most general case where the damping of both the degrees of freedom 
is included. For example, BRBF (buckling restrained braced frame) with dashpot dampers 
can significantly increase the damping of the structure.  Unfortunately, due to the page 
limitation of the Inter Noise paper, the detailed discussions are ignored.    
 
3. FINITE ELEMENT SIMULATION 

A finite element model was developed using ANSYS APDL.  The spring-damper 
element (COMBIN14) and structural mass element (MASS21) are used to model the two-
DOF system.  The following values are specified using Real Constant sets: m1 = 2 kg,  
m2 = 1 kg, k1 = 50 N/m, k2 = 100 N/m, c1 = 1 kg/s, c2 = 0. Therefore, μ = 2, β = 0.5, and 
ζ1 = 5% (the blue curve in Figure 2).   

The analysis type is Harmonic (ANTYPE, HARMIC).  The frequency range is from 
0 to 10 Hz and the number of substeps is 100.  Proper boundary conditions are specified 
such that only vertical motions are allowed.  A vertical force is applied at m1.  

In postprocessing the transmitted force is extracted by defining a variable which 
is the k1 element’s force at the lower node.  The FEM result is compared with the 
theoretical result in Figure 5.  The two results look almost identical in the entire frequency 
range.  Only two zoom-in comparisons show slight differences.  
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Figure 5. Comparison of transmissibility obtained using ANSYS and theoretical model.   

More vibration transmissibility curves with various μ-β-ζ1 combinations were 
created and compared with the theoretical results. They all agree with each other very 
well. Because of the limited page number, these plots are ignored in this paper.  

 
4. CASE STUDY: DESIGN OF FLOATING FLOOR 

This is a project of an office building.  A fitness center was built on the level above 
four conference rooms.  In order to reduce the impact sound transmission, a floating floor 
was constructed in the fitness center.  The vibration transmissibility was also studied.  The 
structural floor is 2-1/2” (63.5 mm) concrete slab on 3” (76.2 mm) steel deck.  Steel beams 
are strengthened such that the structural floor’s natural frequency is 6.7 Hz.  The structural 
floor’s weight is roughly 64 lb/ft2 (312 kg/m2).  A 4” (101.6 mm) floating floor is 
supported by springs with a 2” (50.8 mm) air gap.  By assuming dead load (52 lb/ft2 or 
254 kg/m2) and live load (10 lb/ft2 or 48.8 kg/m2) of the fitness center, the floating floor’s 
weight is roughly 62 lb/ft2 (303 kg/m2).  Including the stiffness of entrapped air [10], the 
natural frequency of the floating floor is 15.6 Hz.  So the mass ratio is almost unity μ ≈ 1, 
and the frequency ratio is β = 2.3283.  Due to concrete and steel beamss the damping of 
the structural floor is negligible. So Eq. (17) was used to study the vibration transmitted 
from the floating floor to the structural floor.    

Figure 6 illustrates the vibration transmissibility curves.  It can be seen that the 
first resonance frequency is at 4.64 Hz.  Also, the effect of damping is insignificant for 
frequencies lower than 10 Hz.  These curves imply that spending more money to increase 
damping of the floating floor is not an effective way to reduce vibration.   

The equipment in the fitness center is mainly elliptical trainers and weight lifting 
stations without dancing or aerobics activities.  There is an additional layer of shock 
absorbent mat for the weight lifting area.  So the excitating frequencies are typically lower 
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than 3 Hz.  The vibration transmissibility is less than 1.41 at frequencies lower than 3 Hz.  
In addition, the vibration level at frequencies close to the structural floor’s natural 
frequency is significantly reduced.  The only concern is that the second harmonic of some 
of the gym activities may be close to 4.64 Hz and got amplified.  

 

Figure 6. A floating floor design example.   
 
5. CONCLUSIONS 
 The theoretical formulas of damped two-DOF vibration transmissibilities are 
derived for the first time in this paper.  Different cases are discussed.  Some details such 
as the effect of mass ratio, resonance frequencies, are deliberated.  These theoretical 
formulas are validated by a finite-element model using ANSYS.  A case study of floating 
floor design is also presented.     

Other damping mechanisms, such as hysteresis damping will be investigated in 
future research.     
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