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ABSTRACT

Traditional modeling for sound propagation in porous media has been done
knowing the macroscopic physical parameters intrinsic to the material. Using
Bayesian model-based analysis the uncertainties of these parameters and their
effect on the accuracy of the selected model can be studied. The Horoshenkov
Model [Horoshenkov, et al., JASA vol 139 (2016)], or similarly Miki Model [Miki,
JASJ, vol 11, pp.25-28 (1990)], can be used to estimate the mean pore size and
porosity of the material under test from measurements of surface impedance or
absorption coefficient using glass beads of known diameter and layer thickness
as an experimental model. The accuracy of these models can be compared using
quantitative measures such as mean, variance and the interdependence of the
estimated parameters. This paper discusses the error and likelihood of several
models using the experimentally measured data sets.
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1. INTRODUCTION

Porous materials in acoustics may be used to design sound absorbers for a variety of
science and engineering applications. While some parameters of porous materials may be
measured directly others can only be calculated by measuring the acoustic characteristics
of the samples and inverting the parameters from these measurements, often done in a
standard impedance tube. Starting with the Miki model [1] these materials could be
modeled by three parameters: porosity(¢), tortuosity(a..), and flow resistivity(c ) along
with sample thickness(d), whereas the Horoshenkov model [2] requires four parameters.
This paper applies Bayesian model-based analysis to inversely inference these parameters
from experimentally measured normal incident surface impedances. The samples are
made of glass beads of varied diameters and thicknesses, and are well investigated in
the literature. Bayesian model-based analysis has recently applied to analyze porous
materials. [3—5] This work sheds light on uncertainties and interdependence of key non-
acoustical parameters of porous media estimated using Bayesian model-based framework,
particularly Bayesian parameter estimation. Bayesian parameter estimation is considered
as the first level of inference, a thorough description on the parameter estimation has
recently fully exposed by Xiang and Fackler. [6]

2. TWO MODELS OF POROUS MEDIA
This section briefly states the models under investigation within this work.

2.1 Modeling Porous Media using Miki’s Model

The propogation coefficient, y, and characteristic impedance, Z., are then given by
Equations 1 and 2.
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where coefficient a = —0.618, and coeflicient b = —0.632. w = 2« f is circular frequency
with f being the frequency. p and c are the density of air and speed of sound in air,
respectively, and i = V—1. An under bar of a variable, e.g. Z . explicitly represents a
complex-valued function. The surface impedance can then be expressed as

Z (w) = Z (w) coth(y d). 4)

Miki model [1] represents a simple predictive model which contains three parameters,
namely porosity, tortuosity, and flow resistivity. Horoshenkov et al. [2] proposed a model
that requires 4 parameters but is based on the assumption of non-uniform pores that vary
with radius in depth, which allows for fitting a log-normal distribution to a variety of pore
geometries.



2.2 Modeling Porous Media using Horoshenkov’s Model

Horoshenkov’s porous media model depends on 4 parameters: porosity (¢), tortuosity,
(@), mean pore size (5), and standard deviation in mean pore size (05). The intrinsic
properties can be calculated from the complex compressibility, C,, and dynamic density,
O, given by Equations 5 and 6.

Z (w) = \[px(w)/Culw). (6)

The complex compressibility and and dynamic density can further be calculated by the
Padé approximations in Equations 7 and 8.
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0,1 = 1/3, 0,5 = e V201D* [\ 9 2 = 0,,/0,5, 0y = 1/3, 6o = €/2@5182° [\2 and
0.3 = 0.1/60.2. Np, is the Prandtl number, v is the ratio of specific heats, and Py is the
ambient atmospheric pressure. The bulk flow resistivity is represented by o, which can
be predicted from the mean pore size and standard deviation in mean pore size [7] by
Equation 13

In the above equations
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where 7 1s the dynamic viscosity of air.

3. BAYESIAN INFERENCE FOR POROUS PARAMETER ESTIMATION

Bayesian inference problems are defined by the updating of prior information that
determine the probability of a certain hypothesis to achieve parameter estimation
and model selection. Using Bayesian estimation and the direct measures of acoustic
characteristics the parameters of these porous materials can be inverted. Glass beads
of known thickness are of interest because some of their intrinsic parameters can be
measured directly making comparison of the predictive power of the models possible.



Fackler et al. [4] write the Bayes theorem for this parameters estimation problem in
Equation 1.
p0|M) p(DI6, M)
pDIM)
where p(0)D, M) represents the posterior information as a probability density function,
p(6IM) the prior information about the parameters, p(D|6, M) the likelihood function,
and p(D|M) the Bayesian evidence. The likelihood function is given by the student t-
distribution

p(6lD, M) =
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where I is the gamma function, B is the number of frequency points, and El% is the
square error between both the real and imaginary parts of the data and model at each
frequency point. Uniform distributions of the parameters in reasonable physical ranges
are used as the prior probability distributions. These ranges are given by p(porosity, ¢) =
Uniform(0, 1), p(tortuosity, @) = Uniform(1, 5), p(mean pore size, 5§) = Uniform(.01, 1)
mm, and p(standard deviation, o) = Uniform(0, 1).

4. RESULTS

The experimental setup provides a known thickness for the material under test,
reducing the parameter estimation problem to the 4 remaining parameters in
Horoshenkov’s model. The inference is performed over 500,000 uniform random
samples in a frequency range of 300Hz to 3kHz. Figure 1 shows the measured and
modeled, real and imginary parts of the normalized surface impedance for glass beads of
2mm diameter in a hard-backed sample with thickness of 40 mm.
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Figure 1: Modeled and measured normalized surface impedance for 40mm thick sample
of 2mm diameter glass beads using Horoshenkov’s model (a) and Miki’s model (b)

Horoshenkov’s model fits the experimental data better than Miki’s model.
Quantitatively, the likelihood function of each model measures quality of model
fitting while the Bayesian evidence in Equation 15 is used to estimate a parsimonious
number of parameters necessary to fully explain the acoustic behavior, shown by Table



3. The Bayesian information criterion can give us a method for ranking the porous
models dependent on the peak of the likelihood [8]. Table 1 lists the mean estimated
parameters and their variance, a measure of the uncertainty in the measurement which
can be obtained through Bayesian inference from a single data set. There is a very low
uncertainty in the estimation of the parameters below. Table 2 shows this information for
the Miki model with the same data set.

Table 1: Estimated mean parameters and variance using Bayesian inference parameter
estimation with Horoshenkov’s model for porous materials with glass beads of 2mm
diameter and 40mm sample thickness.

Parameter Mean Value | Variance
Porosity 0.373 2.99x107%
Tortuosity 1.156 1.96x107!
Mean Pore Size 318 um 3.72x107%
Standard Deviation | 0.410 ¢ 4.38x107%/
Thickness 40 mm 0

Table 2: Estimated mean parameters and variance using Bayesian inference parameter
estimation with Miki’s model for porous materials with glass beads of 2mm diameter and
40mm sample thickness.

Parameter Mean Value | Variance
Porosity 0.402 02
Tortuosity 1.256 9.06e-7
Flow Resistivity | 76.9 kNs/m* | 2.90e-7
Thickness 40 mm 0

Table 3: Maximum likelihood and Bayesian Information Criterion (BIC) from parameters
estimated for Miki model in Table 1 and Horoshenkov model in Table 2

Model Max Likelihood (deciBans) | BIC (deciBans)
Miki 478 885
Horoshekov | 1897 3701

Figure 2 shows normalized posterior probability distributions for the parameters in the
Horoshenkov model. These distributions provide information about how the parameters
depend on each other within the model and each subplot also shows the relationship
between every pair of parameters. The spread of the ellipse indicates the correlation
between parameters and how fixing one parameter can change the inference of the other
parameters. A positive correlation between porosity and tortuosity is recognizable, while
little correlation between porosity and mean pore size. A large interdependence between
mean pore size and standard deviation of the mean pore size in the small parameter ranges
as defined. The size of the distributions indicates the uncertainty in estimation when
performing Bayesian inference. Larger spreads present a larger challenge and variations
when trying to estimate an accurate mean value for the parameter. This reflected by the
greatest effect with the standard deviation in mean pore size.
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Figure 2: Normalized marginal posterior probability distribution over the parameter
space using Horoshenkov’s model

5. CONCLUDING REMARKS

Applying Bayesian parameter estimation to a data set of surface impedance measured
from glass beads of known diameters in a rigid backing impedance tube. Horoshenkov’s
model [2] provides an accurate estimation of the intrinsic parameters of the porous
materials under test. When compared to Miki model, Bayesian inference yields a better
estimation of the mean values of the parameters and lower variation, resulting in better
prediction of the acoustic behaviors of the porous material. These inverted parameters
could be used to characterize the behaviors of unknown materials or design porous
materials with desired absorption properties. Future work can incorporate more models
in the evaluation of Bayesian evidence and explore more variables including frequency
range and different acoustic measurements. Bayesian inference provides an effective
method for inverting parameters of porous material from acoustic measurements.
Horoshenkov’s model can provide more accurate estimations than that using Miki model
so far tested using glass beads.
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