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ABSTRACT

In this paper, generalization of a statistical generative model in independent
deeply learned matrix analysis (IDLMA) is addressed to achieve higher audio
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source separation performance. Audio source separation is the task of extracting
source signals from multichannel mixtures observed using a microphone array,
which can be applied to many systems including noise reduction, speech recognition,
and music analysis. IDLMA is a state-of-the-art separation method exploiting
statistical independence between sources and deep neural network (DNN) inference
of source models, where a time-frequency-varying complex Gaussian distribution is
assumed as a source generative model. This paper presents the generalization of the
source generative model in IDLMA: a time-frequency-varying complex generalized
Gaussian distribution (GGD) is exploited as a new source generative model in
IDLMA. From theoretical and experimental results, both numerical stability in
parameter estimation and improved separation performance are confirmed.
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1. INTRODUCTION

Audio source separation aims to recover original source signals from an observed
multichannel mixture. This technique can be applied to almost all audio systems,
e.g., noise reduction, speech recognition, and music analysis, as a front-end system.
In particular, blind source separation (BSS) estimates the sources without any prior
knowledge such as locations of sources and microphones. The most commonly
used algorithms for BSS in the (over)determined case (number of microphones ≥
number of sources) are independent component analysis (ICA) [1] and its extended
algorithms such as independent vector analysis (IVA) [2], which assume statistical
independence between the sources and estimate the demixing system. Recently,
independent low-rank matrix analysis (ILRMA) [3, 4], which is a unification of IVA
and nonnegative matrix analysis (NMF) [5], was proposed to achieve high separation
accuracy. The original ILRMA proposed in [3] employs a time-frequency-varying
complex Gaussian distribution as a source generative model. Then, this model was
generalized to a time-frequency-varying complex generalized Gaussian distribution
(GGD) [6, 7], where the GGD can represent a more heavy-tailed (super-Gaussian)
distribution. It is reported that the heavy-tailed source generative model improves the
separation performance in ILRMA.

In the underdetermined case (number of microphones < number of sources), on the
other hand, algorithms that estimate the mixing system have been proposed, and many
state-of-the-art algorithms are based on the Duong model proposed in [8]. In the Duong
model, the spatial covariance matrix, which decodes the sourcewise spatial information
(relative locations of the source and microphones and their spatial spread), is estimated by
the expectation-maximization (EM) algorithm. Multichannel NMF (MNMF) [9, 10] is a
technique for underdetermined BSS combining the Duong model [8] and NMF-based
source modeling. The models assumed in MNMF and ILRMA are equivalent in the
determined case if the rank of the spatial covariance matrix is restricted to one. However,
it has been experimentally confirmed that the estimation of a demixing matrix in ILRMA
is more stable than the estimation of a mixing system (covariance matrix) in MNMF,
resulting in higher separation accuracy in ILRMA [3].

In supervised (informed) source separation, deep neural networks (DNNs) have shown
promising performance [11, 12]. Nugraha et al. proposed a unified approach of a Duong-
model-based spatial model and DNN-based source models [11] (hereafter referred to



as Duong+DNN). Since Duong+DNN estimates the mixing system (spatial covariance
matrix) for the separation, this method can even be applied to the underdetermined case.
A unification of the independence-based demixing model and DNN source model was
also proposed as independent deeply learned matrix analysis (IDLMA) [12], and it was
reported that IDLMA achieves higher separation performance than Duong+DNN in the
overdetermined case, just as ILRMA outperforms MNMF.

In this paper, we generalize the source generative model assumed in IDLMA from
the time-frequency-varying complex Gaussian distribution to the time-frequency-varying
complex GGD, which is called GGD-IDLMA. We also reveal the relationship between the
numerical stability of the estimation and the separation performance, showing the efficacy
of GGD-IDLMA.

2. CONVENTIONAL METHOD

2.1. Formulation

Let M and N be the numbers of microphones and sound sources, respectively. We
assume the determined case where M = N. The short-time Fourier transform (STFT) of
the observed mixtures, estimated signals, and source signals are defined as

xi j = (xi j1, . . . , xi jN)T, (1)

yi j = (yi j1, . . . , yi jN)T, (2)

si j = (si j1, . . . , si jN)T, (3)

where T denotes the transpose and i = 1, . . . , I and j = 1, . . . , J denote the indexes
of frequency bins and time frames, respectively. In the determined case, the estimated
signals yi j can be represented as yi j =Wixi j, where Wi = (wi1, . . . ,wiN)H ∈ CN×N is the
demixing matrix, wH

in is the demixing filter for the nth source, and H denotes the Hermitian
transpose.

2.2. ILRMA and its extension to complex GGD

In ILRMA [3], the following time-frequency-varying complex Gaussian distribution is
assumed as a source model:∏

i, j

p(yi jn) =
∏

i, j

1
πri jn
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−
|yi jn|2
ri jn

2

)
, (4)
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where ri jn is the scale parameter of the Gaussian distribution, tikn > 0 and vk jn > 0 are the
NMF bases and activation parameters, respectively, and k = 1, . . . ,K is the index of the
NMF bases. We denote the scale parameter matrix as Rn ∈ RI×J

≥0 , whose elements are ri jn.
The source model in Equation 4 is generalized to the following time-frequency-varying

complex GGD [6]: ∏
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Figure 1: Principle of IDLMA.

where β is the shape parameter and p is the parameter that defines the domain of NMF
decomposition. When β = 2 and p = 2, Equations 6 and 7 become identical to Equations
4 and 5, respectively. The demixing matrix Wi can be obtained by maximizing the
likelihood of the observed signals [3, 6].

2.3. IDLMA

IDLMA is a technique of multichannel audio source separation that estimates the
source model Rn using DNNs. An overview of IDLMA is shown in Fig. 1. In [12], similar
to the original ILRMA [3], the time-frequency-varying complex Gaussian distribution
is assumed as a source model (hereafter referred to as Gauss-IDLMA). On the basis of
Equation 4, the cost function (negative log-likelihood of the observed signal xi j) of Gauss-
IDLMA is obtained as

L =
∑
i, j,n

[ |wH
inxi j|2

ri jn
2 + log ri jn

2
]
− 2J

∑
i

log |detWi| + const. (8)

While ILRMA expresses the scale parameter ri jn with NMF, Gauss-IDLMA estimates ri jn

using DNNs. Since an NMF-based low-rank source model is not always valid, ILRMA
sometimes fails to separate the sources, especially in the case of a speech-speech mixture.
In IDLMA, the appropriate source models for each source are trained in advance using
solo-recorded source signals, and the trained DNNs are used as the estimator of Rn.

Gauss-IDLMA iteratively updates the demixing matrix Wi and the source model Rn.
Equation 8 consists of a negative log-determinant term of Wi and a quadratic form of win.
The minimization of Equation 8 leads to the solution that maximizes the independence
between sources taking the source model (the DNN estimates) Rn into account. Similar
to ILRMA, Wi is updated by iterative projection (IP) [13], which is a convergence-
guaranteed fast algorithm. By applying IP, we can derive the update rule of Wi as follows:

Uin =
1
J

∑
j

1
ri jn

2xi jx
H
i j, (9)

win ← (WiUin)−1en, (10)

win ←
win√

wH
inUinwin

, (11)

where en ∈ RN denotes the unit vector with the nth element equal to unity. To fix the scales
of yi j among the frequency bins, the following back-projection technique is applied:

ŷi jn ← [W −1
i (en ◦ yi j)]nref , (12)



where ŷi jn is the scale-fitted estimated signal, ◦ is the Hadamard product (element-wise
product), [·]n is the nth element of the vector, and nref is the index of the reference channel.

Let DNNn be the DNN source model that enhances the nth source component from a
mixture signal, namely, the scale parameter matrix Rn is estimated by DNNn. DNNn is
pretrained so that |Rn|.1 is predicted from an input mixture spectrogram |X̃ |.1, where | · |.1
denotes the element-wise absolute operation and X̃ ∈ CI×J is a mixture spectrogram in
the training data. In the inference for open data, the variance matrix is updated by the
pretrained DNNn as

Rn ← DNNn(|Yn|.1), (13)
ri jn ← max(ri jn, ϵ), (14)

where DNNn(|Yn|.1) is the DNNn output when the input is |Yn|.1, ϵ is a small value used
to increase the stability of IP, and Yn ∈ CI×J is the spectrogram of the estimated signal
whose elements are yi jn, temporally obtained through the update of Wi.

3. PROPOSED METHOD

3.1. Motivation

In ILRMA, the separation performance can be improved by generalizing its source
model from the complex Gaussian distribution to the complex GGD [6]. Motivated by
this fact, we generalize the source model in IDLMA using the complex GGD, which
is expected to improve the performance of source separation, as well as BSS based
on ILRMA. To consistently maximize the likelihood in GGD-IDLMA, we derive the
maximum likelihood estimate based on the GGD and combine it with the source model
inferred by DNN.

3.2. Update rule of spatial model

As in Gauss-IDLMA, GGD-IDLMA combines the blind estimation of Wi and DNN
inference of the source model Rn. On the basis of Equation 6, the negative log-likelihood
of the observed signal is obtained as follows:

LGGD =
2
β

∑
i, j,n

[ |wH
inxi j|β

ri jn
β
+ log ri jn

β

]
− 2J

∑
i

log |detWi| + const. (15)

When β = 2, Equation 15 reduces to Equation 8 and IP can be applied. However, when
β , 2, IP cannot be applied to Equation 15. This is because IP is only applicable to the
sum of a negative log-determinant of Wi and a quadratic form of win, and Equation 15
includes |wH

inxi j|β, which is not a quadratic form of win when β , 2.
To solve this problem, we employ the majorization-minimization (MM) algorithm [14]

to minimize Equation 15. The MM algorithm is an optimization technique that minimizes
a specially designed majorization instead of minimizing the original cost function.
Equation 15 can be transformed into an IP-applicable form by designing its majorization
function.

We use the following inequality to design a majorization:

|z|β ≤ β

2α2−β |x|
2 +

(
1 − β

2

)
αβ, (16)



where 0 ≤ β ≤ 2, z ≥ 0 is the variable of the function, and α ≥ 0 is the auxiliary variable.
We derive the majorization function of Equation 15 as follows by applying Equation 16:

LGGD ≤
2
β

∑
i, j,n

[
β

2αi jn
2−β
|wH

inxi j|2

ri jn
β
+

2 − β
2ri jn

β
αi jn

β + log ri jn
β

]
− 2J

∑
i

log |detWi|

+ const. (17)
:= L+GGD, (18)

where αi jn is an auxiliary variable. The inequality holds if and only if

αi jn = |wH
inxi j|. (19)

By applying IP to L+GGD, the update rule of Wi to minimize Equation 15 is obtained as
follows:

ci jn = ri jn
β|yi jn|2−β, (20)

Uin =
1
J

∑
j

1
ci jn

xi jx
H
i j, (21)

win ← (WiUin)−1en, (22)

win ←
win√

wH
inUinwin

. (23)

Note that these update rules are valid only for β ≤ 2. When β = 2, Equations 21–23
become identical to Equations 9–11. In the case of Gauss-IDLMA, since the variance ri jn

2

inferred by the DNN source model often includes an excessively small value, Uin obtained
by Equation 9 tends to be a rank-deficient matrix, resulting in the numerical instability of
optimization. In GGD-IDLMA, on the other hand, the geometric mean of ri jn and |yi jn|
weighted by β : 2 − β is used instead of ri jn

2 in Equation 21, which makes the DNN
output smooth and improves the numerical stability of IP. Although a small β improves the
stability, it reduces the convergence speed of the optimization in GGD-IDLMA because
the inference of the DNN source model is discounted. For this reason, it is expected that
there exists a trade-off between the numerical stability and the optimization speed w.r.t.
β. We experimentally find an appropriate β value in the experimental section.

3.3. Architecture and training of DNN source model

In this paper, we only focus on the simplest networks, i.e., fully connected DNNs as in
conventional Gauss-IDLMA. This is because the aim of IDLMA is to build a framework
of DNN-based BSS under a consistent ML criterion and appropriate utilization of DNNs
in terms of parameter optimization.

An outline of DNN training is depicted in Fig. 2. To prepare the training data of mixed
signals, we define the following vectors:

s⃗ jn = (s̃T
( j−2c)n, s̃

T
( j−2c+2)n, · · · , s̃T

( j+2c)n)T, (24)

x⃗ j =

∑
n α jns⃗ jn

∥∑n α jns⃗ jn∥2 + δ1
, (25)

s̄ jn =
α jns̃ jn

∥∑n α jns⃗ jn∥2 + δ1
, (26)
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Figure 2: Outline of DNN training when I = 4, J = 8, N = 2, and c = 1.

where ∥ · ∥2 denotes the Euclidean norm, s̃ jn ∈ CI is the STFT vector of the nth source
at j, s⃗ jn ∈ CI(2C+1) is a vector that vertically concatenates s̃ jn for 2c frames around j as
shown in Fig. 2, x⃗ j ∈ CI(2C+1) is the normalized mixture vector whose amplitude |x⃗ j|.1 is
an input vector for all DNNn, s̄ jn ∈ CI is the reference vector for each source, α jn is a
random variable in the range [0.05, 1], which controls the SNR in x⃗ j, and δ1 is a small
value to avoid division by zero. DNNn is optimized so that the following loss function
between the output vector d jn ∈ RI

≥0 and the reference vector |s̄ jn|.1 is minimized:

LGGD =
1
IJ

∑
i, j

[ |s̄i jn|β + δ2

di jn
β + δ2

− log
|s̄i jn|β + δ2

di jn
β + δ2

]
, (27)

where δ2 is a small value for numerical stability and s̃i jn and di jn are the elements of
s̄ jn and d jn, respectively. Since minimizing Equation 27 is equivalent to the maximum
likelihood estimation of ri jn in Equation 15, DNNn trained with this cost function can be
interpreted as an appropriate source model. After the training, the scale parameter Rn is
inferred by Equations 13 and 14 as in Gauss-IDLMA.

4. EXPERIMENTAL EVALUATION

4.1. Experimental conditions

To confirm the validity of the proposed GGD-IDLMA, we conducted an experiment
on music source separation. We compared six methods: MNMF with 20 NMF bases
(BSS), ILRMA with 20 NMF bases (BSS), DNN+WF, Duong+DNN, Gauss-IDLMA,
and the proposed GGD-IDLMA, where DNN+WF is a combined method employing the
pretrained DNN source model and Wiener filtering (monaural source separation) [15].
For Duong+DNN and IDLMA, the scale parameter matrix Rn was updated by DNNn

after every 10 iterations of the spatial parameter optimization (IP). Note that the DNNs
employed in this paper were different from those of the original Duong+DNN [11] as
follows: (a) each DNN was prepared for each single source, and (b) each DNN was
trained under multiple-SNR conditions using the random amplitude α jn.

We used the DSD100 dataset of SiSEC2016 [16] as the dry sources and the training
datasets of each DNN. The 50 songs in the dev data were used to train DNNn and the top
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25 songs in alphabetical order in the test data were used for performance evaluation. The
test songs were trimmed to the interval of 30 to 60 s. To simulate reverberant mixtures,
we produced two-channel observed signals by convoluting the impulse response E2A
(T60 = 300 ms) obtained from the RWCP database [17] with each source, and mixtures
of bass (Ba.) and vocals (Vo.) (Ba./Vo.) and mixtures of drums (Dr.) and Vo. (Dr./Vo.)
ware produced. The recording conditions of E2A are shown in Fig. 3. All the signals
were downsampled to 8 kHz. An STFT was performed using a 512-ms-long Hamming
window with a 256-ms-long shift for Ba./Vo. separation and a 256-ms-long Hamming
window with a 128-ms-long shift for Dr./Vo. separation. We used the signal-to-distortion
ratio (SDR) [18] to evaluate the total separation performance. The number of hidden
layers in the DNN was set to four. Each layer had 1024 units, and a rectified linear
unit was used for the output of each layer. To optimize the DNN, we added the term
(λ/2)

∑
q gq

2 to Equation 27 for regularization, where gq is the weight coefficient in DNN,
and ADADELTA [19] with a 128-size minibatch was performed for 2000 epochs. The
parameter ϵ was experimentally optimized and set to 0.1 × (IJ)−1 ∑

i, j ri jn
2 for Gauss-

IDLMA and 0.35 × (IJ)−1 ∑
i, j ri jn

2 for GGD-IDLMA. The other parameters were set to
δ1 = δ2 = 10−5, c = 3, and λ = 10−5.

4.2. Results

Figures 4 and 5 show the average SDR improvements of Ba./Vo. and Dr./Vo.,
respectively. The results show the efficacy of a time-frequency-varying complex GGD
as a source model. In particular, although the DNN separation performance (DNN+WF)
when β = 1.94 is not the highest, GGD-IDLMA with β = 1.94 achieves the best
separation performance of all the methods in both Ba./Vo. and Dr./Vo. separation, which
supports the trade-off between the numerical stability and optimization speed when the
demixing matrix is updated as discussed in Sect. 3.2.

5. CONCLUSIONS

In this paper, we generalized the source model of IDLMA to a time-frequency-varying
complex GGD. The update rule of the demixing matrix in GGD-IDLMA shows that
the proposed GGD-IDLMA decreases the numerical instability caused by the DNN
chasm while also reducing the optimization speed. Experimental evaluation showed
the efficacy of the proposed GGD-IDLMA compared with state-of-the-art separation
methods including conventional IDLMA.



Figure 4: Average SDR improvements of 25 Ba./Vo. songs.

Figure 5: Average SDR improvements of 25 Dr./Vo. songs.
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