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ABSTRACT 

For the past decades, railway vibration risk assessment has been a subject of concern 

especially due to the vicinity between railway infrastructures and buildings which 

create a source of annoyance for residents. In this context, mitigation system must 

be developed at different level of propagation. This paper presents a solution for 

vibrations reduction on the propagation path, the ground. A mass network coupled 

at the ground surface, inspired by sonic crystals in acoustics, create cut-off band. 

The influence of these masses’ distribution as well as the mass and surface effects of 

the structures are presented for an ideal reduction. Ground characteristics have a 

direct effect on the performance of the system characterized by Rayleigh's velocity. 

This kind of solution is a variant of the vertical and horizontal wave barrier. 
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1. INTRODUCTION 

 

In recent decades, number of railway infrastructures grew up such as high-speed railways, 

trams and subways. All these infrastructures are more and more often placed in urban 

area with strong acoustic and vibratory requirements. These infrastructures are generally 

coupled to the ground and therefor at the origin of the propagation of waves in the ground. 

These waves generate the vibration of buildings near railway infrastructure and are a 

source of significant noise pollution for residents. In this context, one of the strongest 

issues is to reduce the vibrations transmitted to the ground. There are currently different 

systems to reduce the vibration from the train. Three major categories could be 

distinguished to mitigate railway vibrations. The first category is the mitigation at the 

source, i.e. in the vicinity of the wheel-rail interaction [1]. Without being exhaustive about 

all existing techniques, maintenance operations performed on the wheels of trains and 

rails may contribute to the reduction of vibrations. In addition, pads between the rail and 

the concrete slab can perform mitigation. The second category of mitigation is at the  
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propagation path. Thus, trenches in the ground depth can be made near the track and thus 

reduce the propagation [2]. Horizontal Vibration Barrier system has recently been 

developed using techniques like those used in this paper [3]. A slab is placed at the ground 

surface and blocks the vibrations. The third category of mitigation is at the reception in 

the building where it is possible for example to isolate buildings with springs or pads.  

The purpose of this article is to provide an analytical formulation of a network of masses 

at the ground top surface in order to mitigate ground vibration. It can be pointed out that 

this kind of system  

 

2.  PROBLEM FORMULATION 

 

The problem of interest is a network of mass coupled to the ground at the top surface. For 

railway, a pass by train is represented as an uncoherent line of force. For sake of simplicity 

in this paper, the excitation is a surface force located at (𝑥0, 𝑦0) with the amplitude 𝐹0. 

The Figure 1 gives an overview of the problem. 

 

 
Figure 1 :Network of mass at the top ground surface 

 

In the section 2.1, the ground modelling is presented and the section 2.2 presents the mass 

equation of motion. The section 2.3 presents the coupling between the ground and the 

mass. 

 

2.1 Ground modelling 

 

The ground is modelled with Navier's equation which considers a continuous, 

homogeneous and isotropic elastic layer. In the absence of a body force, and assuming 

  
  

  
  

   
 
   

 
 

   
 
   

 
 



the motion is harmonic, one obtains the following vector equation for the displacement 

vector 𝑢⃗  in the layer: 

 

𝜇∇2 𝑢⃗ + (𝜇 + 𝜆)∇(∇. 𝑢⃗ ) + 𝜌𝜔2 𝑢⃗ = 0⃗  1 

 

where 𝑢⃗ 𝑇 = {𝑢𝑥 , 𝑢𝑦, 𝑢𝑧} is the vector of ground displacement, 𝜇 =
𝐸(1+𝑗𝜂)

2(1−𝜈)
 and 𝜆 =

𝜈𝐸(1+𝑗𝜂)

(1+𝜈)(1−2𝜈)
 are the Lamé constants. 

Using Helmholtz decomposition, the ground equation of motion can be expressed as 4 

waves equation of motion, one for the dilatational wave and the three others for the shear 

wave. Then, the ground is a semi-infinite medium in z-direction and infinite in the 

direction x- and y-direction. A 2D spatial Fourier transform allows to solve the problem 

and to give a relation between the normal displacement and the normal stress at the ground 

Surface: 

 

𝑢̃𝑧(𝑘𝑥 , 𝑘𝑦, 0) = 𝑁(𝑘𝑥 , 𝑘𝑦) 𝜎̃𝑧𝑧(𝑘𝑥 , 𝑘𝑦, 0) 
2 

 

The term 𝑁(𝑘𝑥 , 𝑘𝑦) depends on the number of horizontal layers. It accounts for the 

mechanical and geometrical properties of the ground. 

The stress component 𝜎𝑥𝑧- and 𝜎𝑦𝑧 are zero at the surface. Normal stress along the z axis 

is also zero everywhere on the surface z = 0 except under all mases and can be written as: 

 

{
 
 
 

 
 
 

𝜎𝑥𝑧(𝑥, 𝑦, 0) = 0 ∀(𝑥, 𝑦) ∈ ℝ2

𝜎𝑦𝑧(𝑥, 𝑦, 0) = 0 ∀(𝑥, 𝑦) ∈ ℝ
2

𝜎𝑧𝑧(𝑥, 𝑦, 0) =  

{
 
 

 
 

𝜎1 ∀(𝑥, 𝑦) ∈ 𝑆1
⋮

𝜎𝑁  ∀(𝑥, 𝑦) ∈ 𝑆𝑁
𝐹0∀(𝑥, 𝑦) ∈ 𝑆0

0 ∀(𝑥, 𝑦) ∈ ℝ2 − {𝑆𝑖 ∩⋯∩ 𝑆𝑁}

 3 

 

where 𝜎𝑥𝑧 and 𝜎𝑦𝑧 represent tangential stresses and 𝜎𝑧𝑧 represents normal stress. 𝜎𝑖 

represents the stress applied to the masses 𝑖 by the ground and 𝐹0 is the surface force 

applied at the ground top surface. The stress due to the mass and the force excitation is 

assumed to be constant which is an acceptable hypothesis in the frequency range of 

interest and in regards with the surface compared to the ground wavelength travelling at 

the top surface. The force surface allows to regularize the problem which is singular for 

a punctual force. 

2.2 Coupled mass at the ground surface 

 



In regards with the surface of the masses and the frequency range of interest, it is assumed 

that the mass deformation is negligible. Each mass is located at the position (𝑥𝑖, 𝑦𝑖) and 

its surface is given by 𝑆𝑖 = 𝐿𝑥𝑖𝐿𝑦𝑖 . There are 𝑁 masses coupled to the ground. The 

equation of motion for the mass 𝑖 is given by: 

 

−𝜌𝑖ℎ𝑖𝜔
2𝑤𝑖 = 𝜎𝑖    ∀𝑖 ∈ ⟦1,𝑁⟧ 4 

 

Where 𝜌𝑖 and ℎ𝑖 is the mass density and thickness of the mass 𝑖 respectively and 𝜎𝑖 is the 

coupling stress applied by the ground to the mass 𝑖. 
 

In section 2.1, we shown that we need to know the ground stress at the top surface in the 

Fourier domain. The stress vanishes everywhere expect under each mass. So, we need to 

express the stress in the Fourier domain of each mass.  

 

Considering a mass 𝑖 of surface 𝑆𝑖 located at (𝑥𝑖, 𝑦𝑖), the stress in the z-direction in the 

Fourier domain is given by: 

 
 

𝜎̃𝑧𝑧(𝑘𝑥 , 𝑘𝑦, 0)𝑖 =
∫ ∫ 𝜎𝑖. 𝑒

−𝑗(𝑘𝑥𝑥+𝑘𝑦𝑦)𝑑𝑥𝑑𝑦
𝑦𝑖+𝐿𝑦𝑖

𝑦𝑖

𝑥𝑖+𝐿𝑥𝑖

𝑥𝑖

 5 

 

Assuming a rigid mass, the stress 𝜎𝑖  is constant over the surface 𝑆𝑖. After integrating over 

the surface, it gives the analytical formula: 

 

𝜎̃𝑧𝑧(𝑘𝑥 , 𝑘𝑦, 0)𝑖 = 𝜎𝑖𝑆𝑖𝑒
−𝑗(𝑘𝑥(𝑥𝑖+

𝐿𝑥𝑖
2
)+𝑘𝑦(𝑦𝑖+

𝐿𝑦𝑖
2
))

𝑠𝑖𝑛𝑐 (
𝑘𝑥𝐿𝑥𝑖
2

)𝑠𝑖𝑛𝑐 (
𝑘𝑦𝐿𝑦𝑖
2

) 6 

 

Considering all the stress applied by masses and the punctual force, the normal stress in 

the z-direction at the ground top surface is given in the Fourier domain by: 

 

𝜎̃𝑧𝑧(𝑘𝑥 , 𝑘𝑦, 0) = 𝐹0𝑆0𝑒
−𝑗(𝑥0+

𝑘𝑥𝐿𝑥0
2

+𝑦0+
𝑘𝑦𝐿𝑦0
2

)𝑠𝑖𝑛𝑐 (
𝑘𝑥𝐿𝑥0
2

) 𝑠𝑖𝑛𝑐 (
𝑘𝑦𝐿𝑦0
2

)

+∑𝜎̃𝑧𝑧(𝑘𝑥 , 𝑘𝑦, 0)𝑖

𝑁

𝑖

 

7 

 

Using equation 7, the normal displacement at the top surface is: 

 

𝑢̃𝑧(𝑘𝑥 , 𝑘𝑦 , 0) = 𝑁(𝑘𝑥 , 𝑘𝑦) (𝐹0𝑆0𝑒
−𝑗(𝑥0+

𝑘𝑥𝐿𝑥0
2

+𝑦0+
𝑘𝑦𝐿𝑦0
2

)𝑠𝑖𝑛𝑐 (
𝑘𝑥𝐿𝑥0
2

) 𝑠𝑖𝑛𝑐 (
𝑘𝑦𝐿𝑦0
2

)

+∑𝜎̃𝑧𝑧(𝑘𝑥 , 𝑘𝑦 , 0)𝑖

𝑁

𝑖

) 

 

8 

 

2.3 Resolution of the problem 

 



The continuity of the displacement between the ground top surface and the mass is given 

for each mass 𝑗: 
 

𝑤𝑗 = 𝑢𝑧(𝑥, 𝑦, 0) ∀(𝑥, 𝑦) ∈ 𝑆𝑗 9 

 

Using the relation 9, it comes: 

 

𝑤𝑗 =
1

4𝜋2
∬ 𝑁(𝑘𝑥 , 𝑘𝑦)𝜎̃𝑧𝑧(𝑘𝑥 , 𝑘𝑦, 0)𝑒

𝑗(𝑘𝑥𝑥+𝑘𝑦𝑦)𝑑𝑘𝑥𝑑𝑘𝑦

+∞

−∞

 10 

 

By integrating over the surface 𝑆𝑗 and replacing the normal stress by its expression 7, we 

have: 

 

𝑆𝑗𝑤𝑗 =
1

4𝜋2
∬ ∬ 𝑁(𝑘𝑥 , 𝑘𝑦) (𝐹0𝑆0𝑒

−𝑗(𝑥0+
𝑘𝑥𝐿𝑥0
2

+𝑦0+
𝑘𝑦𝐿𝑦0
2

)𝑠𝑖𝑛𝑐 (
𝑘𝑥𝐿𝑥0
2

) 𝑠𝑖𝑛𝑐 (
𝑘𝑦𝐿𝑦0
2

)
+∞

−∞𝑆𝑗

+∑𝜎𝑖𝑆𝑖𝑒
−𝑗(𝑘𝑥(𝑥𝑖+

𝐿𝑥𝑖
2
)+𝑘𝑦(𝑦𝑖+

𝐿𝑦𝑖
2
))

𝑠𝑖𝑛𝑐 (
𝑘𝑥𝐿𝑥𝑖
2

)𝑠𝑖𝑛𝑐 (
𝑘𝑦𝐿𝑦𝑖
2

)

𝑁

𝑖

) 𝑒𝑗(𝑘𝑥𝑥+𝑘𝑦𝑦)𝑑𝑘𝑥𝑑𝑘𝑦 𝑑𝑆 

 

11 

 

After calculation of the integration over 𝑆𝑗, the linear equation to solve is: 

 

𝑆𝑗𝑤𝑗 = 𝐹𝑗 +∑𝜎𝑖

𝑁

𝑖

𝛾𝑖𝑗  

 

12 

 

With 

𝐹𝑗 =
1

4𝜋2
∬ 𝑁(𝑘𝑥 , 𝑘𝑦)𝐹0𝑆0𝑆𝑗𝑒

−𝑗𝑘𝑥(𝑥0+
𝐿𝑥0
2
−
𝐿𝑥𝑗

2
−𝑥𝑗)−𝑘𝑦(𝑦0+

𝐿𝑦0
2
−
𝐿𝑦𝑗

2
−𝑦𝑗)

𝑠𝑖𝑛𝑐 (
𝑘𝑥𝐿𝑥0

2
) 𝑠𝑖𝑛𝑐 (

𝑘𝑦𝐿𝑦0

2
) 𝑠𝑖𝑛𝑐 (

𝑘𝑥𝐿𝑥𝑗

2
) 𝑠𝑖𝑛𝑐 (

𝑘𝑦𝐿𝑦𝑗

2
)𝑑𝑘𝑥𝑑𝑘𝑦  

+∞

−∞
  

and 

 𝛾𝑖𝑗 =
1

4𝜋2
∬ 𝑁(𝑘𝑥 , 𝑘𝑦)𝑆𝑖𝑆𝑗𝑒

−𝑗𝑘𝑥(𝑥𝑖+
𝐿𝑥𝑖
2
−
𝐿𝑥𝑗

2
−𝑥𝑗)

𝑒
−𝑗𝑘𝑦(𝑦𝑖+

𝐿𝑦𝑖
2
−
𝐿𝑦𝑗

2
−𝑦𝑗)

𝑠𝑖𝑛𝑐 (
𝑘𝑥𝐿𝑥𝑖

2
) 𝑠𝑖𝑛𝑐 (

𝑘𝑦𝐿𝑦𝑖

2
) 𝑠𝑖𝑛𝑐 (

𝑘𝑥𝐿𝑥𝑗

2
) 𝑠𝑖𝑛𝑐 (

𝑘𝑦𝐿𝑦𝑗

2
)𝑑𝑘𝑥𝑑𝑘𝑦

+∞

−∞
 

 

Replacing 𝜎𝑖  by 𝜌𝑖ℎ𝑖𝜔
2, the linear equation 12 can be formulated in matrix format: 

 

( [
𝑆1 (0)

⋱
(0) 𝑆𝑁

] + 𝜔2 [
𝜌1ℎ1𝛾11 ⋯ 𝜌𝑁ℎ𝑁𝛾1𝑁

⋮ ⋱ ⋯
𝜌1ℎ1𝛾𝑁1 ⋯ 𝜌𝑁ℎ𝑁𝛾𝑁𝑁

]) [

𝑤1
⋮
𝑤𝑁
] = [

𝐹1
⋮
𝐹𝑁

] 13 

 

Once we get the expression of 𝑤𝑖, the displacement at the ground top surface is given 

using equation 2 and 7: 

 

𝑢𝑧(𝑥, 𝑦, 0) = 𝐹0𝑇0(𝑥, 𝑦) +∑(−𝜌𝑖ℎ𝑖𝜔
2𝑤𝑖)𝑇𝑖(𝑥, 𝑦)

𝑁

𝑖

 14 

 

With 𝑇0(𝑥, 𝑦) =
1

4𝜋2
∬ 𝑁(𝑘𝑥 , 𝑘𝑦)𝑆0𝑒

−𝑗𝑘𝑥(
𝐿𝑥0
2 −𝑥)−𝑗𝑘𝑦(

𝐿𝑦0
2 −𝑦)𝑠𝑖𝑛𝑐 (

𝑘𝑥𝐿𝑥0

2
) 𝑠𝑖𝑛𝑐 (

𝑘𝑦𝐿𝑦0

2
)𝑑𝑘𝑥𝑑𝑘𝑦

+∞

−∞
 and 𝑇𝑖(𝑥, 𝑦) =

1

4𝜋2
∬ 𝑁(𝑘𝑥 , 𝑘𝑦)𝑆𝑖𝑒

−𝑗𝑘𝑥(𝑥𝑖+
𝐿𝑥𝑖
2
−𝑥)
𝑒
−𝑗𝑘𝑦(𝑦𝑖+

𝐿𝑦𝑖
2
−𝑦)
𝑠𝑖𝑛𝑐 (

𝑘𝑥𝐿𝑥𝑖

2
) 𝑠𝑖𝑛𝑐 (

𝑘𝑦𝐿𝑦𝑖

2
)𝑑𝑘𝑥𝑑𝑘𝑦

+∞

−∞
. 

 



  



3. NUMERICAL RESULTS 

 

In this section, numerical results of the problem presented in section 2 are introduced. 

Each mass is a concrete mass (𝜌 = 2500𝐾𝑔.𝑚3) of surface 1m.1m and thickness 0.2m. 

The force is applied at 5m from the mass. The receiver is located on a surface area of 

10m.5m which are averaged. The ground is a one-layer ground with the characteristics 

𝑐𝑠 = 200𝑚/𝑠, 𝑐𝑝 = 400𝑚/𝑠, 𝜂 = 2% and 𝜌 = 2000𝐾𝑔/𝑚3 

 

Figure 2 gives an overview of a simulation. 

 

We are interested in the insertion loss which correspond to the vibration level at the 

receiver with and without mass network. The definition of the insertion loss is given by: 

 

 

𝐼𝐿(𝜔) =

1
𝑆∬

|𝑢𝑧−𝑤𝑖𝑡ℎ 𝑚𝑎𝑠𝑠(𝜔)|
2𝑑𝑆

𝑆

1
𝑆∬

|𝑢𝑧−𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑚𝑎𝑠𝑠(𝜔)|2𝑑𝑆𝑆

 15 

 

 
Figure 2 : overview of a simulation where the black box is the mass, the red box is the surface force and the blue 

circle is the receiver – case where 𝐿𝑖 = 𝐿𝑖 = 1𝑚. 

 

Figure 3 corresponds to the insertion loss in the case where the distance in x- and y-

direction between each mass is 1m, 2m and 3m and are aligned. The insertion loss is 

almost negligible expect in a frequency range which correspond to a cut-frequency. For 

1m, 2m and 3m, the maximum of insertion loss is at 70Hz, 50Hz and 40Hz respectively. 

This frequency depends on the wavelength travelling at the top surface. A destructive 

interference is created by the mass network. The wavelength of the shear wave is 

approximately 2;85m, 4m and 5m at 70Hz, 50Hz and 40Hz respectively which shows that 

the distance between masses needs to be half a wavelength to mitigate the corresponding 

frequency. 

 



 
Figure 3 ; Insertion loss in the case of a parallel aligned network of mass for different inter distance 

 

Figure 5 corresponds to the insertion loss where the second line is non-parallel to the first 

and third line in the X direction as shown in Figure 4. The difference of insertion loss 

between the aligned network of mass and the shifted network is almost the same which 

indicates that the distance between mass in the x-direction is the factor of main influence. 

 

Figure 4 overview of a simulation where the black box is the mass, the red box is the surface force and the blue circle 
is the receiver – case where L_i=L_i=1m. 



 

Figure 5 Insertion loss in the case of a parallel aligned network of mass for different inter distance with the line 2 
shifted 

 

Figure 6 correspond to a cartography of the insertion loss. It can be identifying the 

interference between masses. 

 
Figure 6 : Cartographie de la perte par insertion à la surface du sol - f=70Hz 

 

Figure 7 corresponds to the insertion loss for different weight of masses. As expected, 

the more weight we are the more mitigation we get. However, the reduction of weight 

tends to shift the cut frequency to higher frequency. When the mass is sufficiently 

important, only the phenomenon of interference exist. The reduction of the mass creates 

tends to reduce this phenomenon and masses don’t block the ground top surface. 



 
Figure 7 : Insertion loss for different weight of masses 

 

Figure 8 corresponds to the insertion loss for different ground top surface. If we increase 

the dilatational celerity by a factor 1.5, the cut frequency slightly changes of few hertz to 

higher frequency. The increase of the shear celerity by a factor 1.5, the cut frequency is 

shifted from 70Hz to 110Hz. It shows that the shear celerity is the sizing parameter to 

investigate the cut frequency. 

 
Figure 8 : Insertion loss for different ground characteristics 

 

 

4.  CONCLUSIONS 

 

We have presented in this paper an analytical modelling of a network of masses at the 

ground top surface to mitigate vibration. It has been identifying a cut frequency which 

mitigate vibration up to 15dB in a specific frequency range. This cut frequency is due to 

an interference phenomenon from the network of masses. 
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