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ABSTRACT 

For the past decades, railway vibration risk assessment has been a subject of concern 

especially due to the vicinity between railway infrastructures and buildings which 

create a source of annoyance for residents. These risk assessments often use 

modelling where the quantity of input data is important. In this paper, we introduce 

a study of the influence of the modelling uncertainty due to input data on the 

calculation of the ground borne noise and vibration in buildings. Monte Carlo 

methods are particularly well suited for this kind of study and consist in the 

generation of a certain number of simulations where the input data are estimated 

according to a specific law of probability. This method makes it possible to identify 

the most sensitive parameters of a model. The objective is to provide a minimum 

uncertainty on the input data to ensure a sufficiently accurate impact study. It 

should be noted that the ground must not only be characterized with methods 

adapted to the impact studies but also have a significant precision which will be 

detailed. 
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1. INTRODUCTION 

 

This paper is focused on method to quantify the effect of the data input uncertainty on a 

railway ground borne noise and vibration assessment. Since railway ground borne noise 

and vibration assessment becomes more and more requested for the design of new railway 

infrastructure, the extension of line or the construction of building closed to the lines, it 

becomes necessary to bound the input data uncertainty in order to get in an acceptable 

output range level uncertainty. 
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The source of railway vibration has been widely studied by D. Thompson in the so called 

“TWINS” model [1]. Many numerical and experimental studies show that it represents a 

good approximation of the force contact at the wheel/ rail interaction [8]. The ground 

structure interaction has been model by different methods with different degree of 

precision. The FEM/BEM modelling allows to consider many geometrical cases which 

requires long computation time [7]. Analytical and semi analytical modelling allows on 

the other hand to model only simple geometry with fast computation time [2]. All these 

models are based on the same ground modelling (electrodynamics model) which is the 

propagation path of waves coming from the pass-by train. Finally, the building model is 

often based on database measurement (RIVAS project). Except the classical FEM 

software, there is a BEM/FEM model called MEFISSTO [6] which can consider the 

building function transfer with a lot of details. 

 

This paper aims at making a synthesis and combine of all this model to get what is of 

interest of all railway assessment which is the ground borne noise and vibration in 

buildings. We focus our study on the influence of the ground uncertainty input data on 

the ground borne noise and vibration. 

 

2. GROUND BORNE NOISE AND VIBRATION MODELLING FOR RISK 

ASSESMENT 

 

In this section, we present models used for the simulation of ground borne noise and 

vibration risk assessment. This model which goes from the excitation source to the 

reception building is the one used for the Monte Carlo simulation presented in section 3. 

 

2.1 Vehicle model 

 

The source of vibration is the rolling stock with the roughness. It must be said that the 

vibration due to moving load due to the passage of the train is of second order compared 

to those due to the roughness in the frequency range of interest. 

 

2.1.1 Rolling stocks 

 

In the frequency range of interest, it is assumed that the rolling stock deformation is 

negligible. The vehicle is therefore considered as a stack of four masses (coach, bogie, 

axle and wheel) linked together by three sets of damped springs (secondary suspension, 

primary suspension and rubber ring) as shown in Figure 1. 

 



 
Figure 1 : Overview of the model for the rolling stock 

 

The linear equations that govern the motion of the rolling stock are: 
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𝑘1 −𝑘1 0 0
−𝑘1 𝑘1 + 𝑘2 −𝑘2 0
0 −𝑘2 𝑘2 + 𝑘𝑎 −𝑘𝑎

0 0 −𝑘𝑎 𝑘𝑎

] − 𝜔2 [
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0 0 0 𝑀𝑤

])[
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𝑤𝑎
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] = [

0
0
0
𝐹𝑤
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Where 𝑀𝑐 ,𝑀𝑡, 𝑀𝑎 and 𝑀𝑤 represents the mass of the coach, the bogie the axle and the 

wheel respectively and 𝑘1, 𝑘2 and 𝑘𝑎 represents the secondary suspension, the primary 

suspension and rubber ring. 

 

The mobility of the wheel is given by: 

 

𝑌𝑤 =
𝑤𝑤

𝐹𝑤
 

 

2.1.2 Roughness 

 

A spectrum of roughness is an estimation of the statistical properties of the roughness 

record over the length of measurement. A roughness spectrum represents the general 

geometrical condition of the running surface.  

The roughness level, 𝐿𝑟, is expressed in decibels and given by the following equation: 

 

𝐿𝑟 = 10. log10 (
𝑟𝑅𝑀𝑆

2

𝑟𝑟𝑒𝑓
2 ) 

Where 𝑟𝑅𝑀𝑆 is the root mean square roughness level in µm and 𝑟𝑟𝑒𝑓 is the reference 

roughness; 1 µ𝑚. This definition of roughness level applies to values measured either in 

the form of a wavelength. 

 



 
Figure 2 :  An example roughness spectrum of guidance EN 15610 used in this paper 

 

 

When the train runs at speed 𝑉 over undulations of the surfaces with wevalength 𝜆, these 

produce vibration at a frequency 𝑓 given by: 

𝑓 =
𝜆

𝑉
 

Typical wavelength of roughness relevant are between about 0.1 µm and 1 mm. 

 

In the interaction model described above, the surface roughness is assumed to excite the 

wheel/rail system at the contact point. The contact filter for a circular contact is given by: 

 

|𝐻(𝑘)|2 =
1

1 +
𝜋
4

(𝑘𝑎)3
 

 

2.2 Railway platform 

 

The continuity of the displacement at the contact between the wheel and the rail is 

determined from the displacement of the track, the rolling stock and the contact spring 

(Hertz contact). Introducing the roughness, 𝑟(𝜔), which insure the contact, it comes the 

following relation:  

𝑤𝑟 = 𝑟 + 𝑤𝑤 − 𝑤𝑐 

Using this formula (TWINS Model [1]), it is possible to derive the force contact: 

 

𝐹𝑟 =
𝑟

𝑌𝑟 + 𝑌𝑤 + 𝑌𝑐
 

Where 𝑌𝑟, 𝑌𝑤 and 𝑌𝑐 is the mobility of the rail, the wheel and the contact. 

 

In the section 2.1.1, it has been shown how to estimate the mobility of the wheel as well 

as the roughness used this paper. In this section, we focus  

 

Contact 

 

There are several different models used for the contact between the wheel and the rail but 

a simple and realistic is the Hertz model. The contact stiffness due to the elastic 



deformation creating a contact zone. The contact area is supposed elliptical with semi-

axes 𝑎 and 𝑏. If the contact area is circular: 

 

𝑎 = 𝜎1 (
3𝐹0𝑅0

2𝐸
)

1
3
 

The interaction is modelled by a contact spring of stiffness 𝐾𝐻: 

 

𝑤𝑐 =
𝐹

𝐾𝐻
 

Where the contact spring mobility is defined as: 

𝑌𝑐 =
1

𝐾𝐻
=

𝜉

2
(

2

3𝐸2𝐹0𝑅0
)

1
3
 

With 𝐸 is the Young modulus of both bodies assumed to have the same material 

properties, 𝐹0 is the mass applied by the rolling stock to the rail at the contact and 𝑅0 is 

the effective radius of curvature of the surfaces in contact. 

 

2.2.1 Rail-sleeper- platform 

 

A classical railway track is composed of a rail laid upon pads that protect the sleeper from 

high impact forces. The sleepers are laid upon the platform (ballast or concrete). The 

support of the rail is assumed continuous. 

 
Figure 3 : Beam on two layer 

The rail is described as a Timoshenko beam and is describer with the deflection 𝑤𝑟 and 

rotation 𝜙𝑟 of the cross section. The equation of motion for a Timoshenko beam on elastic 

foundation 𝑠(𝜔) per unit length is: 

 

𝐸𝑟𝐼𝑟
𝑑4𝑤𝑟(𝑥)

𝑑𝑥4
+ 𝑠𝑤𝑟(𝑥) − 𝑚𝑟𝜔

2𝑤𝑟(𝑥) = 𝐹𝛿(𝑥) 

 

where 𝐸𝑟, 𝐼𝑟 and 𝑚𝑟 are the Young modulus, second moment of area and density of the 

rail. 𝐹 denotes the punctual force applied to the rail at the position 𝑥 = 0. 

 

The term 𝑠(𝜔) depends on kind of foundation which is in this case a spring pad and a 

sleeper mass per unit length and the platform. The stiffness can be written as: 

 

𝑠(𝜔) =
𝑘𝑝(𝑘𝑠(𝜔) − 𝜔2𝑚𝑠)

(𝑘𝑝 + 𝑘𝑠(𝜔) − 𝜔2𝑚𝑠)
 



 

Where 𝑘𝑝 and 𝑚𝑠 are the stiffness of the pad and the density of the sleeper per unit length. 

The term 𝑘𝑠(𝜔) correspond to the stiffness of the platform which is discuss in section 

2.2.2. 

 

The solution for the transfer mobility can be found using the Fourier transform which is 

given by: 

𝑌𝑟 =
𝑤𝑟(𝑥)

𝐹
=

1

2𝜋
∫

1

𝐸𝑟𝐼𝑟𝑘4 + 𝑠(𝜔) − 𝑚𝑟𝜔2
𝑒−𝑖𝑘𝑥𝑑𝑘 

∞

∞

  

 

where 𝑘 is the wavenumber. 

 

 

2.2.2 Ground platform interaction and Ground propagation 

 

In this section, the railway platform is modelled and Figure 1 gives an overview of the 

problem under consideration. The railway platform is assumed to be a semi-infinite slab 

coupled to the ground and excited by a punctual force. 

 
Figure 4 : Railway platform coupled ot the a 2 layers ground 

 

The semi-infinite slab is modelled using the Kirchhoff-Love hypothesis so we neglect the 

shear deformation and the rotary inertia. In the frequency domain, the equation of motion 

is: 

 

𝐷𝑠
∗∇4𝑤𝑠(𝑥, 𝑦) − 𝜌𝑠ℎ𝑠𝜔

2𝑤𝑠(𝑥, 𝑦) = 𝐹0𝛿(𝑥 − 𝑥𝑜)𝛿(𝑦 − 𝑦𝑜) + 𝜎𝑠(𝑥, 𝑦) 

 

Where 𝐷𝑠
∗ = 𝐷𝑠(1 + 𝑗𝜂𝑠) is the complex flexural stiffness, 𝐹0 is the amplitude of the force 

applied on the slab to the point (𝑥0;  𝑦𝑂). 𝜎𝑠(𝑥, 𝑦) represents the stress due to the 

ground/slab coupling. 



The unknowns of the problem are the displacements of slab which can be expanded in 

series of slab mode and a Fourier transform: 

 

𝑤𝑠(𝑥, 𝑦) =
1

2𝜋
∫ ∑𝑎𝑚𝜙𝑚(𝑦)

𝑚

𝑒𝑗𝑘𝑥𝑥𝑑𝑘𝑥

∞

∞

 

 

The ground is modelled with Navier's equation which considers a continuous, 

homogeneous and isotropic elastic medium: 

𝜇∇2 𝑢⃗ + (𝜇 + 𝜆)∇(∇. 𝑢⃗ ) + 𝜌𝜔2 𝑢⃗ = 0⃗  

where 𝑢⃗ 𝑇 = {𝑢𝑥 , 𝑢𝑦, 𝑢𝑧} is the vector of ground displacement. 

The ground is a semi-infinite medium in z-direction and infinite in the direction x- and y-

direction. Tangential stresses along x- and y-direction with respect to the z are zero at the 

surface. Normal stress along the z axis is also zero everywhere on the surface z = 0 except 

under slabs. The expression of the ground displacement at the top surface in the Fourier 

domain can be put in the following form: 

𝑢̃𝑧(𝑘𝑥 , 𝑘𝑦, 0) = 𝑁(𝐾𝑥 , 𝑘𝑦)𝜎̃𝑧𝑧(𝑘𝑥 , 𝑘𝑦, 0) 

The linear system to evaluate is: 

∑((𝐷𝑠
∗𝑘𝑚

4 − 𝜌𝑠ℎ𝑠𝜔
2)𝑎𝑚 − 𝐹𝑚)𝛾𝑚𝑞 = 𝑆𝑞𝑎𝑞

𝑚

 

 

• Punctual mobility of the platform 

 

It is now possible to give the expression of the modal amplitude by solving the linear 

system above. 

 

𝑘𝑠 =
𝑤𝑠(𝑥0, 𝑦0)

𝐹0
 

• Propagation form the platform at the ground top surface 

 

We are also interested to determine the displacement at the ground surface. A pass by 

train is represented as a sum of uncorrelated force applied to the platform. The modal 

amplitude of the slabs allows to determine the ground displacement by carrying out an 

inverse 2D Fourier transform of expression: 

𝑢(𝑥, 𝑦, 0) = √∑|∑((𝐷𝑠
∗𝑘𝑚

4 − 𝜌𝑠ℎ𝑠𝜔2)𝑎𝑚 − 𝐹𝑚
𝑖 )𝑇𝑚(𝑥, 𝑦)

𝑚

|

2

𝑖

  

Where the summation over 𝑖 corresponds to the sum of uncorrelated force applied to the 

platform at the position (𝑥𝑖, 𝑦𝑖).  
 

2.3 Building transfer 



 

These transfers are not simulated and deduced from experimental data. Immission 

corresponds to ground-building vibration interactions and is also decomposed into three 

steps: 

 

• ground to building foundation (transfer function TF2, usually an attenuation), 

leading to foundation vibration levels (Lv3): 

•  

𝑇𝐹2 = 𝐿𝑓𝑜𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛 − 𝐿𝑓𝑟𝑒𝑒𝑓𝑖𝑒𝑙𝑑 𝑔𝑟𝑜𝑢𝑛𝑑  

 

• building foundation to floor (transfer function TF3, usually an amplification due 

to the floor first resonant vibration modes): 

 

𝑇𝐹3 = 𝐿𝑓𝑙𝑜𝑜𝑟𝑠 − 𝐿𝑓𝑜𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛  

 

• floor vibration to ground borne noise (transfer function TF4) corresponding to 

sound radiated by vibrating structures and leading to sound pressure levels in the 

room (Lp). The following frequency dependent transfer function is used, based on 

an energy approach [5]: 

𝑇𝐹4 = 10. log10(𝜎) + 10. log10 (
4𝑆

𝐴
) 

where 𝜎 is the radiation efficiency of the floor, 𝑆 its surface area and 𝐴 the absorption 

area of the room; the reference for sound level is 2.10−5Pa and for velocity level 

5.10−8m/s. A 3 dB constant is often added assuming both floor and ceiling are the main 

ground borne source in the room. Ground borne noise (room space average sound level) 

is estimated in a separate module from the floor space average velocity level according 

to the building acoustics theory.  

 

The transfer function from the ground (free field) to the building is give, by the formula 

in decibel: 

  

𝑇𝐹𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 = 𝑇𝐹2 + 𝑇𝐹3 + 𝑇𝐹4 

 

3. MONTE CARLO SIMULATIONS 

 

The Monte Carlo Method relies on repeated random sampling to solve problems that 

might be deterministic in principle. This method is used in many physical domains for 

many years [3,4]. This technique is particularly well suited for this type of simulation as 

the random processes involved in any event occurring. 

The method allows investigation of the possible outcomes of a series of unpredictable 

situations in order to assess the impact, allowing for better decision making under 

uncertainty. 

 

Probabilistic techniques are commonly used in simulations where millions of random 

processes (such as light scattering) govern the observed properties of certain parameters.  

 

In this paper, the ground properties range are computed using a normal (Gaussian) 

function. The probability density of the normal distribution is: 

 



𝑓(𝑥|𝜇, 𝜎2) =
1

√2𝜋𝜎2
𝑒

−
(𝑥−𝜇)2

2𝜎2  

 

where 𝜇 is the mean of the distribution (and also its median and mode), 𝜎 is the standard 

deviation and 𝜎2 is the variance. Ground properties are sampled using a random number 

generator. 

 

Since the model introduced in section 2 is not time consuming and takes less than 5 min 

to run, the Monte Calro Method is well suited to investigate the influence of the input 

parameters uncertainties. 

 

4. NUMERICAL RESULTS 

 

In this section, we present results from the simulation using a Monte Carlo procedure. 

Using the modelling introduced in section 2, the vibration and acoustic level of interest 

in a railway vibration risk assessment is the ground borne vibration and noise defined as 

follow: 

 

{
𝐿𝑓𝑙𝑜𝑜𝑟 = 10. 𝑙𝑜𝑔10 (

|𝑢(𝑥, 𝑦, 0)|2

𝑢𝑟𝑒𝑓
2 ) + 𝑇𝐹2 + 𝑇𝐹3

𝐿𝑝 = 𝐿𝑓𝑙𝑜𝑜𝑟 + 𝑇𝐹4

 

 

A set o 100 simulation has been done where we look at the mean and deviation of the 

vibration and acoustic level. In the following simulation, we only consider the uncertainty 

on the ground. The ground under consideration is a two layers ground with the following 

characteristics: 

 

Characteristics Layer 1 Layer 2 

Shear celerity (m/s) 200 400 

Dilatational celerity (m/s) 400 800 

Mass density (Kg/m3) 2000 2000 

Damping (%) 3 3 

Thickness (m) 5 ∞ 
Table 1: Ground Characteristics used in the simulation 

 

This section focuses on the influence of the ground’s uncertainties. The deviation applied 

to shear celerity, dilatational celerity, damping, density and thickness are 50m/s, 100m/s, 

2%, 100 kg/m3 and 1m respectively. The Figure 5 gives the random value of the celerity 

used for the 100 simulations. 

 

 



 
Figure 5 : Histogram of the ground properties for 100 simulations – case where all ground parameters are considered 
to follow a normal distribution 

 

Figure 6 shows the ground borne noise and vibration in a building due to the pass by train. 

Because the function transfer from the floor vibration to the acoustics radiation in the 

room is constant, the deviation on the vibration level is identical as the deviation on the 

acoustics level. The deviation of the level per frequency goes up to ±5dB and is 2.9dB in 

global level. Going into more details, it is possible to identify that the deviation at low 

frequency is mainly due to the uncertainty of the shear celerity while the deviation at high 

frequency is mainly due to the uncertainty of the damping. The ground density and the 

dilatational uncertainty are of second order between the shear celerity, the damping and 

the ground thickness. 



 
 

 
Figure 6 : Mean spectrum and deviationf of the vibration level at the ground top surface (top left), the force level 
applied to the railway platform( top right), the ground borne vibration of the ceiling (bottom left) and the ground borne 
noise in a room of the building (bottom right) 

 

5.  CONCLUSIONS 

 

This paper is a first attend to introduce the uncertainty in a global model of railway ground 

borne noise and vibration. Since only the case of ground uncertainty has been considered, 

it already shows that for a two layers ground, the shear celerity needs to stay in a range 

of ±50m/s and the damping in a range of 1% to have global level lower than ±3dB. Further 

investigation aims at giving uncertainty for all input data in a railway ground borne noise 

and vibration assessment. 
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