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We proposed an ultrathin absorber that can efficiently absorb broadband and quasi-

omnidirectional underwater sound. The absorber consists of a thin viscoelastic (VE) layer 

embedded with thin-plate scatterers (PSs) of equal width but with gradient variation in 

thickness. A dynamic model considering the full interaction of the PSs as a thin plate and the 

VE matrix as an elastic solid is used to predict the absorption coefficient of the absorber, which 

is validated by an effective medium model and the finite element model. The absorber exhibits 

perfect or quasi-perfect absorption (QPA) in multiple bands and broad incident angles at deep 

subwavelength thickness, due to resonant excitation of multiple local modes of different types 

in the absorber. By properly adjusting the absorbers’ geometric and the material properties, 

broadband QPAs of over 99%, 95%, and 90% at bandwidths of 202.0 Hz, 348.3 Hz, and 572.9 

Hz, respectively, are achieved via combined effects of multiple locally resonant (LR) modes. It 

thus offers an effective method for controlling low-frequency and broadband underwater sound. 
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1. Introduction 

Effective absorption of low-frequency and broadband sound has always been a challenging task, 

especially for underwater sound, which has a longer wavelength than sound in air at the same 

frequency. This is because of the weak intrinsic dissipation of sound waves with longer 

wavelengths by traditional viscoelastic (VE) materials [1, 2]. High/perfect sound absorption 

(SA) can only be realized if the thickness of the absorbing material is no less than a quarter-

wavelength (QW) of the longitudinal waves in the material or a QW of the incident sound for 

sound in air [3]. To enhance low-frequency SA capabilities, various methods have been 

proposed, including multi-layered structures [4], a rigid or heavy elastic backing [5, 6], 

impedance gradient coatings [7], embedding cavity resonators [8, 9], and usage of ceramic foam 

[10]. However, the first three methods inevitably make the absorber bulky or heavy. Embedding 

cavities, despite being lightweight, suffer from large deformation at high hydrostatic water 

pressure and may have reduced effect [2, 11]. On the other hand, ceramic foams, which 

demonstrate high low-frequency absorption, require heavy backing behind the sample. 

The discovery of the local resonance (LR) principle opens a new path for controlling 
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low-frequency noise by light, subwavelength structures [12–14]. Typical local resonators 

consist of softly coated heavy spheres embedded in a hard matrix [12, 13]. High absorption is 

thus achieved at the LR frequency, which is adjustable by varying the effective mass and 

stiffness. However, the bandwidth of the absorption peak is still too narrow, even considering 

dissipation. To overcome this, placing multiple resonators with a single degree-of-freedom 

into one unit cell was proposed to broaden the working bandwidth by increasing the number 

of SA peaks at different frequencies [15–17]. To realize a broadband effect, more resonators 

must be introduced, thus increasing the weight of the structure, yet the performance is still 

limited. Efficiently broadening the bandwidth of low-frequency SA remains a challenge.  

Recently, perfect/quasi-perfect acoustic absorbers of subwavelength thickness or of low 

weight have become a focus of research [1, 18–24], including those using Helmholtz 

resonators [18–20], QW resonators [20], an acoustic membrane absorber [1, 21], a lossy-

resonant plate absorber [22], and a labyrinthine acoustic absorber [3, 23, 24]. Despite these 

studies for airborne sound, few perfect or quasi-perfect absorbers have been reported for 

water-borne sound and in the presence of transverse waves, although a quasi-perfect 

absorption of water-borne sound has been observed by Mei et al. [24] by a metasurface whose 

thickness is only 0.15 times the wavelength of the absorbed sound. Broadband perfect/quasi-

perfect absorption for underwater sound at a subwavelength range is still a challenge. 

Recently, by embedding multiple elastic plate scatterers (PSs) into a unit cell of a VE 

matrix layer, we observed perfect and quasi-perfect absorptions at multiple frequencies or in 

a broad band [25] corresponding to a deep subwavelength regime of incident sound. In each 

unit cell, these multiple elastic PSs of equal thickness but gradiently varying widths, were 

distributed uniformly along the z-direction and parallel to the layer surfaces. In this work, a 

quasi-perfect absorber is proposed via a different structural configuration. The absorber is 

made up of a VE matrix layer inserted with multiple elastic PSs of equal width but gradually 

varied thickness in a unit cell. Results show that the proposed absorber can also achieve 

perfect/quasi-perfect absorption at multiple LR frequencies and a broad band below the QW 

frequency. The effects of geometrical parameters, including the thickness, thickness gradient, 

and width of the PSs, and the thickness of and loss factors related to elastic waves in the VE 

layer are also discussed. It is also shown, by considering embedded PSs with the same total 

weight, that the current absorber exhibits lower LR frequencies compared with the absorber 

in Ref. [25], yet the current one is relatively easier to fabricate, making it a simpler and 

efficient device for absorbing low-frequency and broadband underwater sound. The effects of 

the intrinsic loss factors of elastic waves in the VE layer on the broadband SA behavior of the 

absorber are also discussed. 

 

2. Description of the sound absorber 

The sound absorber proposed in this paper consists of a VE layer embedded with a set 

of elastic PSs, as schematically shown in Fig. 1. The density and thickness of the VE 

layer/absorber are respectively ρ1 and h1. The upper and lower half-spaces of the absorber are 

water and air, respectively. In each unit cell, I elastic PSs of width L, thickness h2i, and density 

ρ2 are distributed uniformly along the z-direction and parallel to the surfaces of the layer, where 

i = 1, 2, 3, …, I, with I an integer greater than 1. Thus, the distance between the PSs in a unit 

hc1 = h1/(I+1). The thickness of the ith PS, h2i, is gradiently varied as h2i = h2I + (6 − i)Δh with 
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Δh the thickness gradient. The lattice constant is l and the distance between the units of PSs is 

d. 

A plane acoustic wave is impinging upon the absorber with an incident angle θi and 

amplitude Pi. The sound wavenumber in water is ko = ω/co, with co the related sound speed 

and ω the angular frequency. The blocked pressure is calculated from the incident pressure 

and its specular reflection 
sin

1( , ) 2 cos( ( )cos ) o ijk x

b i o c ip x z P k z Ih e
 

  . The sound scattered 

by and that transmitted through the absorber is due to sound radiation from the upper and 

lower surfaces of the absorber excited by the blocked pressure.  

 

Fig. 1. Schematic diagram of the proposed sound absorber. 

 

3. Theoretical modeling and analytical solution 

3.1. Dynamic model 

The SA properties of the proposed absorber are simulated using a dynamic model (DM) 

based on an analytical modelling of the interaction between the PSs and the VE layer, similar 

to what was established in Ref. 25. Briefly, both the scattered sound pressure 𝑃𝑠 and the 

transmitted sound pressure 𝑃𝑡   in the upper and lower fluids satisfy the 2D sound wave 

equation in the x and z planes. The elastic waves in the VE layer satisfy the 2D wave equation 

in an elastic solid [26–28]. Classical plate theory (CPT) is applied for the description of motion 

of each PS, which are thin compared with the thickness of the VE layer and the wavelength 

of shear waves in the PSs [25, 29]. With all constraints directly exerted on the neutral plane of 

each PS, the force equilibrium and displacement continuity in both normal and shear directions 

at all interface surfaces are thus given by: 

1) At z = −hc1: 

1

(1)

12

( , )1
( , )

c

t
z c

a z h

p x z
u x h

z 



 


,                         (1) 

 (1)

1 1( , ) ,z c t cx h p x h     , and                          (2) 

(1)

1( , ) 0zx cx h   ;                                       (3) 

2) At z = (i − 1)hc1: 



4 
 

   
   

 

( ) ( 1)

1 1( ) ( 1) 2
1 1

2 2
2 ( )

2 2 2 12 2

, ( 1) ,( 1)
,( 1) ,( 1)

2

( ) ( ) ( ) ,( 1)

i i

zx c zx ci i i
z c z c

n

i

n i n i n z c

n n

x i h x i hh
x i h x i h

x x

H x h H x D H x u x i h
x x

 
 

 






 

 

    
     

  

   
       

   



 

,(4) 

   

 
 

( ) ( 1)

1 1

( )

1' 2 ( ) 2
2 2 2 1

,( 1) ,( 1)

,( 1)
( ) ( ) ,( 1)

2

i i

zx c zx c

i

z ci i
i n i n x c

n

x i h x i h

u x i hh
E H x h H x u x i h

x x x

 

 







   

     
       

      


, (5) 

   ( ) ( 1)

1 1, ( 1) ,( 1) 0i i

z c z cu x i h u x i h    , and                      (6) 

   
 ( )

1( ) ( 1)

1 1 2

,( 1)
,( 1) ,( 1) ( )

i

z ci i

x c x c i n

n

u x i h
u x i h u x i h ih H x

x






 
    


 ;(7) 

3) At z = Ihc1: 

( 1)

1 1 1( , ) ( , ) ( , )I
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, with i = 1, 2, 3, …, I, and  

( ) = ( / 2 ) ( / 2 )nH x H x n l L H x n l L       defines the position of the PSs in the nth unit cell, 

with 0, 1, 2,...n    .
 

The displacement, stress, and pressure components in Eqs. (1)–(10) can be expanded as:              

( ) ( )( , ) ( ) ,mjk xi i
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                             (11) 
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where r = z or x represent the normal or shear components, respectively; sin 2 /m o ik k m l    

and m are the numbers of space harmonics; 
( ) ( )i

zmU z , 
( ) ( )i

xmU z , 
( ) ( )i

zmF z , and 
( ) ( )i

xmF z  are 

equivalent to their counterparts in Ref. [27] with m , m , 1 , and sc  invariant with i; 

2 (2)

0 1/ ( )sm m zm cP U Ih     and 
2 (1)

1/ ( )tm a m zm cP U h     according to Eqs. (1) and (10); 
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2 2

m m ok k    and 
2 2

m m ak k    are the sound wavenumbers in the z-direction in the upper 

and lower half-spaces, respectively; and /a ak c  is the sound wavenumber in air. 

( )nH x in Eqs. (4)–(7) can also be expanded as a sum of Fourier series as
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L l n
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 


. (15)

 

By substituting Eqs. (11)–(15) into Eqs. (1)–(10) and using the orthogonality of the space 

harmonics in a spatial period, the q-indexed coefficient equations are produced: 

,[ ]{x } [F ]{x } {p }q q n q n n q

n

C






  ,                    (16) 

where [ ]qC  and {p }q
 are equivalent to their counterparts in Ref. 25; 

,[F ]n q n
 is a 

(4 +4) (4 +4)I I  matrix different from that in Ref. 25 with its entries listed in the Appendix; 

and (2 1) (2 1) (2 2) (2 2) (2 1) (2 1) (2 2) (2 2) T{x } [ , , , ,... , , , ]i i i i I I I I

q q q q q q q q qA B A B A B A B         for i = 0, 1, 2, 

3, …, I, are the unknown wave propagation coefficients of the qth mode. 

By rewriting Eq. (16) in global matrix form (C F)x p   for all values of the index q, 

the solution
T T T

1 0 1x [ x x x ]   can be expressed as: 

  1x ( C F ) p  ,                                (17) 

where C , F , and p  are in the same forms as their counterparts in Ref. [25]. Note that, although 

p  as a block-partitioned matrix is in the same form as those derived in Refs. [25], [26], and 

[27], its entries related to multiple PSs in a unit are completely different from those due to one 

single PS in each unit cell in Refs. [26] and [27] and are also different from those in Ref. [25] 

due to PSs with equal thicknesses but gradiently varied widths. 

The total surface pressure and surface velocity are thus calculated by: 

1 1 1( , ) ( , ) ( , )T c b c s cp x Ih p x Ih p x Ih                       (18) 

and: 

1 1( , ) ( , ).I I

z c z cv x Ih j u x Ih                              (19) 

The SA coefficient over one period length l of the surface is given by: 

/ab in   ,                                      (20) 

where 
*

1 1
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2

0 0

| | cos( )

2

i i
in

P
l

c




   are respectively 

the absorbed and incident sound powers (i.e., the sound powers per unit length in the y-direction) 
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over l, where Re denotes the real part of a complex value and the asterisk denotes the complex 

conjugate. 

3.2. Equivalent medium model  

An equivalent medium model (EMM) based on the transfer matrix method is presented to 

validate the results at a long-wavelength range when the dilatational wavelength in the VE 

matrix λd1 >> l, L, and h2. Each layer containing the ith PS can be regarded as a homogeneous 

layer, with an equivalent characteristic impedance denoted as Zei. Since the CPT is applied to 

each PS, whose thickness deformation is neglected, all constraints are directly exerted on the 

neutral plane of each PS. Thus, Zei is directly related to the characteristic impedance of each PS 

Zpi by Zei = Zpi×fr, where fr = L/l and Zpi = jρ2cd2tan(kd2h2i), with cd2 and kd2 = ω/cd2 the 

longitudinal wave velocity and the related wavenumber of the PS, respectively. Note that, in 

the low-frequency range and for a thin PS, Zpi ≅ jρ2h2iω. 

The characteristic impedance of layer i can then be calculated using the well-known 

transmission line theory as: 

2 1

2 1 1 1
1

2 1 1 1

tan( )
, 0,1,2,3,..,

tan( )i

e
e i d c

d e

i c d

Z jZ k h
Z Z i I

jZ k h Z


 


,        (21) 

where Zd1 = ρ1cd1 and 2

e e

i ei iZ Z Z  , with 0 0eZ . The normal absorption coefficient (AC) 

based on the EMM can thus be calculated as 21 | | ,pr    with the reflection coefficient

2 1 2 10 0 0 0( ) / ( )
I I

e e

pr Z c Z c 
 

   . 

 

4. Numerical model 

A finite-element model (FEM) is also developed using COMSOL Multiphysics® (v5.1) to 

verify the proposed analytical model. The VE matrix is modeled as a solid domain and the 

water and air are modeled as acoustic fluid domains. Each embedded PS is modeled as a solid 

element based on the theory of elasticity. Only a unit cell of the absorber is modeled, due to its 

spatial periodicity. A periodic boundary condition is applied on the boundaries of the unit cell 

in the x-direction. At the interface of the PS and solid matrix domain, the stress equilibrium and 

displacement continuity in both the normal and tangential directions are applied. A fully 

coupled acoustic–structure boundary condition is applied at the interface of the solid and fluid 

domains. Perfectly matched layers are added at both the top of the water domain and the bottom 

of the air domain to mimic anechoic termination of outgoing waves [30]. The reflected and 

transmitted pressures through the layer were measured at the upper- and lower-side boundaries 

of the layer, respectively. The AC can then be calculated by: 

1 ,I IR T                                 (22) 

where  
2

/I r iR p p  and  
2

/ /I w t i aT Z p p Z , with / cos( )w w w iZ c   and 

/ cos( )a a a tZ c   the normal impedances of the water and air, respectively. 
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5. Results and discussion 

For simulation, the material and geometric parameters adopted for the absorber are as 

follows: ρ0 = 1000 kg/m3 and c0 = 1500 m/s for water; h1 = 6 cm, ρ1 = 400 kg/m3, cd1 = 550√1 

+ j0.05 m/s, and cs1 = 50√1 + j0.3 m/s for the VE layer; h2I = 1.5 mm, Δh = 0.1 mm, ρ2 = 7800 

kg/m3, E2 = 216 GPa, v2 = 0.3, and η = 0.001 for each embedded PS; and ρa = 1.21 kg/m3 and 

ca = 340 m/s for air. Since the purpose of this study is to examine the subwavelength behavior 

of the proposed absorber, the frequency below the QW of the longitudinal wave in the VE 

layer or below fλ/4 is of interest. A normalized frequency of Ω = f/fλ/4 is used, where fλ/4 = cd/4h1 

= 2291.7 Hz for a 6-cm-thick VE layer. 

5.1. Verification of the results 

Figure 2 compares the ACs of the VE layer with embedded PSs of two different widths 

and distances calculated by the DM and EMM, respectively. In Figs. 2(a) and (b), one can 

observe that, for a small PS width or L = 0.04 m, the AC calculated by the DM agrees well 

with that by the EMM for both small and large distances between the units of PSs. This is 

reasonable since the EMM assumes λd/L >> 1, while λd ≥ 0.24 m >> L holds within the entire 

frequency range of interest. 

In Fig. 2(c), it is observed that, for wider PSs or L = 0.09 m and a smaller distance d, 

the AC calculated by the DM also matches very well with that by the EMM, and both match 

well with the results for embedded infinite PSs. From Fig. 2(d), as the distance d between the 

units of PSs decreases, the AC calculated by the DM gradually converges to that of the case 

with infinite PSs of the same number and thickness. 

 

Fig. 2. Normal ACs of the VE layer with embedded PSs of infinite width and finite width 

calculated by different models. 

For PSs of a larger size and a larger distances between the units of PSs, where the 

assumptions of EMM fail to hold, the FEM is used to validate the results predicted by the DM. 

Figure 3 shows the normal AC of the absorber for L = 0.09 m and d = 0.06 m. One can observe 

that the results based on the DM generally agree well with those predicted by the FEM. The 
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deviation between the results of the models can be attributed to neglecting the thickness of the 

PSs and the effect of higher-order plate waves in the PSs. 

 

Fig. 3. Normal absorption coefficients of the proposed absorber with six embedded PSs in a 

unit cell, calculated by different models, with a solid curve for the FEM and a dotted curve for 

the DM with ∆h = 0.1 m and h26 = 1 mm. 

 

5.2. Multiband and broadband quasi-perfect sound absorption 

Figure 4 compares the normal ACs with and without the embedded six PSs (I = 6) at 

various distances between the units of PSs. The width of each PS is fixed at L = 0.09 m. 

Without the embedded PSs (solid gray), a single absorption peak is observed at Ω = 1 or at the 

QW frequency as expected, because the water-loaded soft VE layer can be approximated as a 

rigid–free longitudinal waveguide (LW) or a QW resonator [25]. The AC thus reaches a 

maximum at the integer times of the QW frequencies.  

With the embedded PSs and a longer distance between their units (d > 0.02 m), four AC 

peaks are observed below the QW frequency, denoted as P1, P2, P3, and P4. For d = 0.025 m, 

0.03 m, and 0.04 m, quasi-perfect absorptions (over 93.0%) are observed at P1, P2, and P3 for 

layer thicknesses of 2.4%, 4.9%, and 5.8% of the wavelength of the incident sound (taking d 

= 0.04 m as an example). In addition, nearly full absorption (over 99.9%) is observed at P3 

for d = 0.03 m, 0.04 m, and 0.05 m. 

The frequencies and magnitudes of those AC peaks change as d is varied. Specifically, 

with increased d, the peak at P1 shifts to a lower frequency and the related AC slightly 

decreases; the frequency of P2 is hardly changed but its magnitude decreases when d > 0.03 

m. The peaks at P3 and P4 both shift to higher frequencies as d increases, with the magnitude 

of P4 significantly increasing with d while that of P3 is hardly changed. Due to these variations 

of the AC peaks with d, a broadband quasi-perfect SA is observed near P2 and P3 for d = 

0.02 m, 0.03 m, and 0.04 m, at a layer thickness of around 0.05 of the incident sound 

wavelength. Specifically, an AC over 98% and a bandwidth of 123.5 Hz are observed for d = 

0.025 m, an AC over 99% and a bandwidth of 202 Hz for d = 0.03 m, and an AC over 95% 

and a bandwidth of 348.3 Hz for d = 0.04 m. When the distance d is increased to 0.05 m, an 

ultra-broadband quasi-perfect SA is even found near all P2, P3, and P4, with a related AC over 

90% and a bandwidth of 572.9 Hz. 
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Fig. 4. Normal ACs from a viscoelastic layer with and without embedded PSs for various spaces 

between the units of PSs and L = 0.09 m. 

 

5.3. Velocity fields and multiple LRs of different types 

To find the physical origin of the quasi-perfect absorption at the above AC peaks, the 

velocity fields at the related frequencies of P1, P2, P3, and P4 are shown in Figs. 5(a), (b), (c), 

and (d) for L = 0.09 m and d = 0.04 m. For P1, the associated velocity field is strong around 

the middle parts of all the PSs but weak near their boundaries. From later observations in Fig. 

7, this resonance frequency Ω1 decreases with L but increases linearly with the PS’s thickness 

h26, so it can be inferred that the vibration at P1 is related to the bending motions of all the PSs 

with fixed boundaries. Bending resonance of a free–rigid boundary is also observed along the 

strip between units of PSs with a height of h1 and a width of d, which is also supported by 

observations in Figs. 4, 6, and 7 that the frequency related to P1 decreases with d but increases 

with h1. The quasi-perfect absorption at P1 is thus attributed to resonant excitations of multiple 

local bending modes of the PSs and those between units of PSs. Note that the origin of this 

peak is different from that of its counterpart in Ref. [25], which stems from a combined effect 

of the locally resonant bending modes of the PSs and the locally resonant LW mode between 

units of PSs. 

For P2, as shown in Fig. 5(b), the vibration is mainly concentrated between the 6th PS 

and the water–layer interface. From the previous results in Fig. 4 and those in Fig. 7, the 

frequency of P2 hardly changes with d, but increases linearly with L, declines with h2, and 

drastically declines with h1. It thus can be inferred that the quasi-perfect absorption at P2 arises 

mainly from resonant excitation of local bending modes of the layer region between the 6th 

PS and the water–layer interface and with a height of L and a length of h1/7.  

For P3, as shown in Fig. 5(c), besides the concentrated vibration between the 6th PS 

and the water–layer interface, strong velocity is also found between the units of PSs and is 

stronger near the bottom of the layer. From Fig. 7, the related frequency increases linearly 

with d, but decreases drastically with L and h1, so the vibration between the units of PSs can 

be interpreted as a local free–fixed bending mode with a height of d and a length of h1, while 

that between the 6th PS and the water–layer interface is a local LW mode with a height of 

2h1/7 and a length of L. Consequently, the quasi-perfect absorption at P3 stems from resonant 

excitations of local LW modes between the 6th PS and the water–layer interface and local 
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bending modes between the units of PSs. 

For P4, as shown in Fig. 5(d), strong vibration is not only observed between the 6th PS 

and the water–layer interface and between the units of PSs near the bottom of the layer with a 

height of 2h1/7, it is also found near and between the PSs in a unit. From Fig. 7, the frequency 

of P4 decreases with L and h1 but increases with d and h2, so one can infer that the SA peak at 

P4 arises from the resonant excitations of local bending modes of the PSs in a unit and between 

the units of PSs with a height of d and a length of 2h1/7, together with the local LW modes 

between the (i+1)th PS and the ith PS/the water–layer interface in a unit. 

 
Fig. 5. Velocity field distributions in the viscoelastic layer with embedded PSs at the 

frequencies related to P1, P2, P3, and P4, or at (a) Ω = 0.256, (b) Ω = 0.518, (c) Ω = 0.620, 

and (d) Ω = 0.742, respectively, for L = 0.09 m and d = 0.04 m. 

 

5.4. Parameter analysis 

To further investigate the effects of the other parameters of the PSs and VE layer on the 

SA properties of the absorber, Figs. 6(a)–(e) show the variation of the normal AC with the 

width, thickness, and thickness gradient of the PSs, the thickness of the VE layer, and the loss 

factors in the layer, respectively, with L = 0.09 m and/or d = 0.04 m. 

As shown by Fig. 6(a), as L increases, the resonance frequencies of the SA at P1, P3, 

and P4 decrease while the frequency of P2 increases. In addition, the AC at P4 also increases 

significantly with L. As a result, an ultra-broadband quasi-perfect SA is observed for L = 0.08 

m in the vicinity of P2, P3, and P4, with a related AC over 83.7% and a bandwidth of 751.7 

Hz. 

Figure 6(b) demonstrates that the magnitudes of the AC at P1, P3, and P4 all generally 

decrease as h2i decreases. Meanwhile, the resonance frequencies at P1, P3, and P4 decrease, 

while that at P2 increases. Figure 6(c) shows that the larger the thickness gradient Δh between 

adjacent PSs in a unit, the higher the magnitudes and resonance frequencies of P1 and P4 will 

be, and the lower the frequencies of P2 will be. Meanwhile, the magnitudes of P1, P2, and P4 

all increase with Δh, while that of P3 increases for Δh ≤ 0.1 mm but decreases for Δh > 0.1 mm. 
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The relations between these resonance frequencies, or Ω1, Ω2, Ω3, and Ω4, and the geometric 

parameters of the absorber, namely L, d, h2i, and h1, are shown in Fig. 7. 

The effects of the loss factors related to the shear waves and dilatational waves in the 

layer are shown in Figs. 6(e) and (f), respectively. In general, the larger the shear loss factor, 

the broader the bandwidth of all four peaks will be. Comparatively, the dilatational loss factor 

has only a slight effect on the SA peaks, especially for P1. 

 

Fig. 6. Absorption coefficients of the proposed absorber at different (a) PS widths L, (b) PS 

thicknesses h2i, (c) thickness gradient Δh, (d) layer thicknesses h1, (e) layer dilatational loss 

factors ηd, and (f) layer shear loss factors ηs, with L = 0.09 m and/or d = 0.04 m. 

 

Fig. 7. Dependence of the resonance frequencies of P1 (diamond), P2 (circle), P3 (square), 

and P4 (star) on the geometric parameters of the proposed absorber, with (a) width, (b) distance 

between units of PSs, and (c) thickness of the 6th PS, and (d) layer thickness.
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Fig. 8. Absorption coefficients of the proposed absorber for sound waves at different incidence 

angles, when L = 0.09 m and d = 0.03 m. 

 

Figure 8(a) shows the ACs of the proposed absorber at various incidence angles when 

L = 0.09 m and d = 0.03 m. A perfect absorption (100%) occurs at θi = 12°, 13°, and 14° near 

the frequency of P3, or at Ω = 0.622. For the peaks of P1, P2, and P3, the angle ranges for 

ACs larger than 0.9 are θi ≤ 27°, 56°, and 55°, and those for ACs larger than 0.8 are θi ≤ 48°, 

66°, and 64°, respectively, which can be easier identified from Fig. 8(b). These perfect/quasi-

perfect SAs near the aforementioned four peaks have little angular dependence for a broad 

range of incidence angles, despite a slight shift of their resonance frequencies. The weak 

angular dependence is expected, since these high or quasi-perfect absorptions all originate 

from resonant excitations of the intrinsic local modes inside the layer. The proposed ultrathin 

quasi-perfect absorber thus also displays a quasi-omnidirectional behavior. 

 

5. Conclusions 

In this study, an ultra-thin sound absorber made up of a thin viscoelastic (VE) layer 

embedded with periodically distributed plate scatterers (PS) was proposed for the efficient 

absorption of low-frequency broadband underwater sound. Compared with the very low 

absorption of the VE layer without embedded PSs, quasi-perfect sound absorptions (SA) were 

observed at four resonance frequencies below the quarter-wavelength (QW) frequency, due to 

the introduced PSs. These quasi-perfect SAs stem from resonant excitations of multiple local 

modes of different types inside the absorber. These local modes include not only local bending 

modes of the PSs, between the units of PSs and between the Ith PS and the water–layer 

interface, but also local longitudinal waveguide modes between units of PSs, between the Ith 

PS and the water–layer interface, and between PSs in a unit. Broadband low-frequency sound 

absorption can be realized by the combined effect of these local resonance modes via proper 

adjustment of the width, thickness of each PS, the thickness gradient between PSs, and the 

space between PSs in a unit or between the units of PSs, and by a higher shear loss factor. 

Quasi-perfect absorption behavior is also maintained for a wide range of incident angles. 

Compared with the previous absorber design in Ref. [25], the current absorber exhibits better 

low-frequency SA performance and is easier to fabricate. It thus offers a simpler and effective 
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method for developing an ultrathin underwater sound absorber with broadband and 

omnidirectional absorption properties. 
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Appendix: Related formulae and equations for the DM 

The nonzero entries of ,[F ]n q n  in Eq. (16) are given by: 

4 1,4 3 ( 1) 1 ( 1) 1 , , ,r r r R q n r R r fq n q nf g c s Z c                           (A1) 

4 1,4 2 ( 1) 2 ( 1) 2 , , ,r r r R q n r R r fq n q nf g c s Z c                         (A2) 

4 1,4 1 ( 1) 3 ( 1) 3 , , ,r r r R q n r R r fq n q nf g c s Z c                          (A3) 

4 1,4 ( 1) 4 ( 1) 4 , , ,r r r R q n r R r fq n q nf g c s Z c                         (A4) 

4 1,4 1 ( 1) 1 ,r r r R q nf g c                                     (A5) 

4 1,4 2 ( 1) 2 ,r r r R q nf g c                                    (A6) 

4 1,4 3 ( 1) 3 ,r r r R q nf g c                                    (A7) 

4 1,4 4 ( 1) 4 ,r r r R q nf g c                                    (A8) 

 4 ,4 3 ( 1) 5 ( 1) 1 , , ,r r r R n r R r lq n q nf s g s Z c                         (A9) 

 4 ,4 2 ( 1) 6 ( 1) 2 , , ,r r r R n r R r lq n q nf s g s Z c                       (A10) 

 4 ,4 1 ( 1) 7 ( 1) 3 , , ,r r r R n r R r lq n q nf s g s Z c                        (A11) 

 4 ,4 ( 1) 8 ( 1) 4 , , ,r r r R n r R r lq n q nf s g s Z c                        (A12) 

4 2,4 3 , ( 1) 12 ,r r r n r R q nf g s c                                 (A13) 

4 2,4 2 , ( 1) 22 ,r r r n r R q nf g s c                                 (A14) 

4 2,4 1 , ( 1) 32 ,r r r n r R q nf g s c     and                         (A15) 

4 2,4 , ( 1) 42 ,r r r n r R q nf g s c                                 (A16) 
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where 1 1, 1sin( ),rR r ran n cg g r h  2 1, 1cos( ),rR r ran n cg g r h   3 1, 1 1cos( ),rR r n n n cg g R r h   

and 4 1, 1 1sin( )rR r n n n cg g R r h  , with , , 2r ran r n n ng g R   and 2
,

2

n r
r n

jk h
g  ; ,rRts

1,2,...8t   are equivalent to their counterparts in Ref. [25], for r = 1, 2, …, I; and 

2 2 2

, , 2 2 2( )r fq n n q rZ D k k h   , ' 2

, , 2 2 2 2r lq n n q rZ E h k k h   . 
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