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ABSTRACT 
In noise control applications, porous materials are often inhomogeneous with depth. 
For better understanding of sound absorbing mechanism, the depth-dependent 
inhomogeneity of the porous media is approximated by multilayered porous 
absorbers of finite-thickness layers with each layer being considered as 
homogeneous. This work applies the Bayesian probabilistic inference to analyze 
multilayer porous materials, developing a method to determine simultaneously the 
number of constituent layers and the physical properties of each layer. The Bayesian 
analysis is based on experimental measurements of the acoustic surface impedance 
of a potentially multilayered material sample with multilayer porous acoustic 
propagation models. The number of layers considered in the propagation model is 
varied so as to formulate a finite set of different porous materials models, and 
Bayesian model selection is applied in estimating the model with a parsimonious 
number of layers present in the sample. Once the number of layers has been 
determined, Bayesian parameter estimation inversely estimates the physical 
properties of each layer.  
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1. INTRODUCTION 

 
This paper presents a recent effort using two levels of Bayesian inference to analyse 
porous materials in multiple layers. This paper is heavily replying on the most recent 
publication by the authors [1]. Recent publications have also reported on Bayesian 
methods of parameter estimation applied for the characterization of single-layered porous 
materials [2-3]. In these two papers, Bayesian analysis is exploited to inverse the physical 
parameters of porous materials from acoustical measurements in an impedance tube. The 
current study investigates an extension to these existing studies in such a way that the 
Bayesian framework includes a porous model selection. It represents a higher level of 
Bayesian inference to estimate the number of layers present in material samples under 
investigation, beyond parameter estimation, a lower level of Bayesian inference. 
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Furthermore, the prior probabilities for inverted parameters are assigned to be broad, 
uninformative distributions so that the inverted parameter values are objectively 
estimated, predominantly from the experimentally measured acoustic data. The approach 
is a model-based method, besides the parameter estimation, Bayesian model selection has 
also carried out using a model of potentially multiple layers. The model selection 
estimates the number of layers in the measured data. The following discussions begin first 
with the model formulation, followed by the formulation of two levels of Bayesian 
inference. The results are then demonstrated.  
 
2.  MULTI-LAYER MODEL FORMULATION 
 
There exist a number of porous material models [4,5], the current work employs Miki 
generalized empirical model [6] that describes a single layer homogeneous porous 
material by its acoustic propagation coefficient as 
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and its characteristic impedance as 
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with the effective flow resistivity, 
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where  is porosity,   is tortuosity, f is flow resistivity, 00 ,c are the air density 

and speed of sound, and 1i . Miki model describes a porous material comprising 
cylindrical tubes oriented at an arbitrary angle to the surface normal. 
 
 Potential multi-layered configurations employ the transfer matrix method for 
modeling one layer equivalent-fluid materials of thickness d [5] by a matrix  
 

 









)cosh(/)sinh(

)sinh()cosh(
eq dZd

Zdd

c

c




T ,     (4) 

 
where   is the propagation coefficient of the equivalent fluid as given in Equation 1, and 

cZ  is the characteristic impedance as given in Equation 2. When this layer of the material 

is terminated by a rigid backing, the sound pressure, p , and the normal particle velocity, 

xv , along x-direction can be determined by 
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where the subscript 0x  indicates the front material surface. For multiple N equivalent-
fluid porous layers, a chain of square transfer matrices replaces the single transfer matrix 
in Equation 4 for each distinct layer. Equation (5) is extended, leading to  
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where the superscript (n) denotes the transfer matrix for nth equivalent-fluid layer 
determined by Equation 4. The equivalent-fluid layers (and corresponding transfer 
matrices) are stacked with layer 1 being the front, its surface is defined at 0x  and layer 
N is adjacent to the rigid backing. Sound pressure, p , and the normal particle velocity, 

xv , along x-direction at the surface of the 1st layer material are used to determine the 

complex-valued surface impedance, 
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This surface impedance of multiple layer structure is used as ‘model’ in Bayesian model-
based inference in the following. The acoustical data experimentally measured using the 
transfer function method in an impedance tube are in form of normal incident surface 
impedance, which are used for the inversion by the two-levels Bayesian inference. 
 
3.  TWO-LEVES OF BAYESIAN INFERENCE 
 
This work intensively uses Bayes’ theorem in two levels of inference. This section first 
pursues Bayesian model selection, followed by Bayesian parameter estimation. The 

acoustical data in form of vector are denoted as ][ sZD . They contain experimentally 

measured surface impedance as function of frequency, while the surface impedance 

predicted using Equation 7 through Equations (4,6) are denoted as nM  for the predicted 

surface impedance of n-layers porous materials. 
   
3.1 Bayesian model selection 
 

The model selection applies Bayes’ theorem to calculate the probability of the model, nM

, given data, D , over a set of N models,  
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where )(Dp is a constant once the data are collected. )|( np MD  is marginal likelihood, 

also termed ‘evidence’. Quantity )( np M is prior probability of model, nM . It encodes 



prior knowledge about the models. The key quantity here is the evidence, also denoted as 
)|( nn pZ MD for simplicity. When comparing two models, Bayes factor is used  
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This work assigns equal prior to all the models under test, so the Bayes factor becomes 
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Eventually, the data prefer one of the models. 
 
3.2 Bayesian parameter estimation 
  
Once a suitable model is selected, the parameter estimation applies Bayes’ theorem to 

determine the probability of the porous parameters, ],,[ f Θ  given the model, 

nM  and the data, D , as 
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where ),|( np MΘD  is likelihood function. )|( np MΘ  is prior probability of Θ given the 

model, nM . It encodes prior knowledge about the parameters prior to the data analysis. 

Quantity, )|( np MD  is independent of parameter, Θ . In this context, it serves as a 

normalization constant. Note )|( np MD  is exactly the same as the marginal likelihood in 

Equations 8, 9, denoted as )|( nn pZ MD . It plays a central role in the model selection. It is 

calculated by integral of the likelihood, ),|()( npL MΘDΘ  multipled by the prior, 

)|( np MΘ , over the entire parameter space. This work applies nested sampling for all the 

calculations of the probabilities. Consult Fackler et al. [1] for detailed exposition of the Bayesin 
formulation and nested sampling. 
 
4.  EXPERIMENTAL RESULTS 
 
Both Bayesian model selection and Bayesian parameter estimation are carried out using 
the experimentally measured data. When two layers porous materials1, Melamine foam 
and Armafoam Sound, AFS 240 foam, are measured in a configuration of Melamine foam 
over AFS with the Melamine foam being the outer layer exposed to the normal incident 
sound waves. Figure 1 shows the Bayesian inferential results.  The estimations have also 
explored when the layer thicknesses are taken as unknown. With both known and 

                                                      
1 Melamine form, Foam Techniques Limited, Wellingborough, Northamptonshire, UK 
and AFS 240 foam, Armafoam Sound, AFS; Armafoam Sound: Armacell UK Ltd, 
Oldham, Lancashire, UK. 



unknown thickness, Bayesian inference is capable to yield inversion results in terms of 
the number of layers, and layer parameters. Table I lists all the parameters estimated. 
 

 
 
Figure 1. Comparison between experimentally measured normal incident, complex-
valued surface impedance of multiple porous layers and the model prediction. Bayesian 
model selection determines two layers in the measured data, and the modelled data are 
determined through Bayesian parameter estimation.   
 
5.  CONCLUDING REMARKS 
 
 Two levels of Bayesian inference have been applied to the porous material 
inversion. Miki model is used to describe one layer among potentially multiple layers of 
porous materials. The normal incidence surface impedance experimentally measured in n 
impedance tube serves the experimental data. The model selection and porous parameter 
estimation are carried out within a unified Bayesian framework. Nested sampling is 
exploited to the both levels of inference. For the two layers porous materials, the Bayesian 
inference demonstrates its capability to infer inversely the number of layers and the 
physical parameters of foam materials. The detailed exposition of this analysis has 
recently been published in a peer-reviewed archival journal paper [1].  
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TABLE I. Bayesian estimation of porous parameters (mean 6 standard deviation) using 
experimentally measured data in form of r the acoustic surface impedance, directly taken 
from a publication by the authors [1]. The materials used are the combination of 
melamine foam on AFS 240 foam. Two-layer setting is obtained using the Miki 
generalized model, containing three parameters. The layer thickness is estimated from 
measured acoustic data (top) and fixed at the known value (bottom). Directly measured 

porosity,  , and flow resistivity, f , from a round robin test [7] are also listed for ease 

of comparison. 
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