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ABSTRACT 
A robotic voice assistant is constructed for entertaining service. The robot is 
comprised primarily of three functional units: a microphone array, a cloud-based 
voice assistant and a binaural rendering loudspeaker array. The microphone array 
is utilized to locate the human user and to extract the speech commands given by 
the user. The extracted commands are then sent to a convolution neural network 
built ourselves. The response from the cloud is broadcast at the robot end by using 
a linear loudspeaker array. Various binaural processing modes are implemented in 
light of a special inverse filtering approach. The inverse filters are formulated in 
the time domain, which makes it immune to the noncausal artifacts such as 
wraparound errors and pre-ringing that are frequently encountered in the 
frequency-domain formulations. However, the frequency-domain weighting and 
equalization is still possible in the proposed approach. An industrial personal 
computer serves as the coordinator of the preceding processing units. With these 3 
units working in tandem, the proposed robot is capable of interpreting human 
commands and responding with immersive binaural audio. 
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1. INTRODUCTION 

 Digital voice assistant (VA) is receiving increased popularity. Despite much 
research on internet of things (IoT), sound field control in VA application is still 
relatively untapped in acoustic signal processing. We proposed a system comprised of 
three units: binaural audio, localization and speech recognition, as depicted in Fig. 1.   
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Fig1. Block diagram of the robotic voice assistant 

In the acquisition phase of the VA, source localization alongside signal 
extraction is carried out. To this end, the VA is equipped with a six-microphone 
uniform circular array (UCA) for single-source localization. We propose a direction of 
arrival (DOA) estimation algorithm based on time difference of arrival (TDOA) 
measurement. Instead of conventional TDOA-based algorithms [1-3] that locate the 
source of interest by finding the intersection of hyperboloid branches, we directly solve 
a linear system for the DOA, which is appealing for real-time implementation in terms 
of accuracy and complexity.  

As one of the most important ingredients of this work, synthesis of virtual 
auditory scenes has been an active research topic in audio signal processing. There are 
two categories of spatial sound field reproduction: multichannel audio and binaural 
audio. Multichannel audio seeks to recreate globally an immersive sound field, with the 
aid of multiple loudspeakers [4-6], while binaural audio aims to reproduce the target 
field at the ears of oftentimes a single user [7, 8]. In the rendering phase of the VA, we 
focus on binaural audio rendering using a loudspeaker array. 

The sound reproduction can be regraded as an inverse problem. In general, two 
types of deconvolution approaches, the frequency-domain method [9] and the time-
domain method [10, 11] can be utilized to design the required inverse filters. In this 
paper, we build upon the previous research of a time-domain with multichannel inverse 
filtering. The problem is formulated into an underdetermined system by introducing 
multiple channels of transducers. The underdetermined problem enables exact model 
matching without residual errors. The time-domain underdetermined multichannel 
inverse filtering (TUMIF) approach is employed to design the prefilters for the binaural 
audio processsor. The TUMIF approach is examplified through the application of cross-
talk cancellation (XTC) [12-14]. 

In the intelligent classification phase of the VA, convolutional neural networks 
(CNN) are utilized in speech command detection and sound events classification. 
Speech command recognition can be found in references [15, 16]. In this paper, we 
apply Very Deep Convolutional Networks for Large-Scale Image Recognition 
Networks (VGGNet) [17] to classify by using Mel-frequency spectral coefficients 



(MFSC) as the features [18]. In the training phase of the networks, batch normalization 
[19] and learning rate decay, etc., are employed. In addition, the dataset is also 
augmented to make the system robust to adverse environments with background noise 
and reverberations. The performance of the inference engine is assessed by using F1-
scores.  
 
2.  LOCALIZATION  
2.1 Coordinate system for the UCA 

Under the two-dimensional plane-wave assumption, sound pressure ( )mp ψ  received 
by the mth microphone of an M-microphone UCA can be expressed as 
 ( ) ,mj

mp Aeψ −= κr   (1) 

where 1, , ,m M=   (cos ,sin )m m mr ψ ψ=r , r  is the radial distance, and mψ  is the 
corresponding angular position of the mth microphone. A is the amplitude and 

(cos ,sin )k θ θ=κ  with k being is the wavenumber. The angle θ  is the look direction of 
the incident plane wave. Thus, the array steering vector ( )θa of the UCA is given by 

 1cos( ) cos( )( ) M
Tjkr jkre eθ ψ θ ψθ − − − − =  a     (2) 

 
2.2 DOA estimation 

Taking the first microphone as the reference, we can rewrite the steering vector as 
 1[cos( ) cos( )]ˆ( ) 1 M

Tjkre θ ψ θ ψθ − − − − =  a    (3) 
It follows that the TDOAs can be obtained by matching the phase shifts in the elements 
of the preceding steering vector with those due to the time delays relative to the 
reference microphone. 

 1 11 1[cos( ) cos( )]1 ,M M
T Tjkr j je e eθ ψ θ ψ ωτ ωτ− − − − − −   =       (4) 

where ω  is the corresponding frequency and 1mτ  denotes the TDOA between the mth 
microphone and the first microphone, and can be estimated by generalized cross 
correlation phase transformation (GCC-PHAT) [20]. For the mth microphone,  

[ ]1 1cos( ) cos( )m mkr θ ψ θ ψ ωτ− − − =  

 1 1 1(cos cos )cos (sin sin )sinm m mr r cψ ψ θ ψ ψ θ τ⇒ − + − =   (5) 
Rearranging Eq.(5) for 2, ,m M=   into a matrix equation leads to 

 

21

2 1 2 1

1 1 1

(cos cos ) (sin sin )
cos
sin

(cos cos ) (sin sin )M M M

c
r

c
r

τ
ψ ψ ψ ψ

θ
θ

ψ ψ ψ ψ τ

 
 − − 

     =        − −    
 

     (6) 

Solution of (cos ,sin )θ θ  in the equation above gives the information of DOA. 



 
3.  BINAURAL AUDIO RENDERING WITH THE TIME-DOMAIN 
UNDERDETERMINED MULTICHANNEL INVERSE PREFILTERS (TUMIF) 

In this chapter, the TUMIF approach is adopted to design prefilters for binaural 
processing. The problem is formulated into an underdetermined system by introducing 
multiple channels of control loudspeakers. It follows that there are an infinite number of 
exact solutions for this problem. The matching model aims to reproduce desired signals 
at the control points of the ears. Tikhonov regularization (TIKR) [21] is employed to 
calculate the inverse filters. 
 
3.1 The TUMIF-based binaural audio reproduction 

 
Fig. 2. The block diagram of a general multichannel model-matching problem. 

The proposed robust binaural rendering system is depicted in Fig. 2. Ns target 
sources, Nc control points and Ns loudspeakers are indicated. The design problem can be 
viewed as a model matching problem: 
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  (7) 

where m(k)’s, g(k)’s, and h(k)’s symbolize the impulse response sequences of the 
matching model, the room response, the prefilters, and “*” stands for linear convolution. 
Ni, Ns, and Nc denote the numbers of the target sources, loudspeakers, and control points. 
Assume that g(k)’s, and h(k)’s are of lengths Lg and Lh, respectively, so the m’s must be 
of length, ( )1g hL L L= + − . In matrix notation, the equation above can be written as 

 ( ) ( ) ( )k k k= ∗M G H   (8) 
Assume all three systems are finite-impulse-response (FIR) systems. Equation (8) can 
be rewritten into the following matrix form: 
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Or, 

 ,=m Gh   (10) 
where m’s and h’s represent the impulse response vectors of the matching models and 
the prefilters: 
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The convolution matrix, Gij, associated with the jth control loudspeaker and the ith 
control point is defined as 
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Equation (9) represents a general multiple-input-multiple-output (MIMO) model-
matching problem 

 
c i c h s h s iLN N LN L N L N N× × ×=M G H  (12)  

The matrices, M, H, and G, represent the matching model, prefilters, and the room 
impulse response matrix between the loudspeaker inputs and the control points. It 
should be noted that G is an c h sLN L N× matrix. For Eq. (5) to be an underdetermined 
system, the following inequality must be satisfied 

 ( )1c h s g h c h sLN L N L L N L N< ⇒ + − <   (13) 
Therefore, the length of the prefilters must be selected according to 
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3.2 The matching model of cross-talk cancellation 

The XTC binaural audio rendering is intended to create a headphone-like listening 
experience. In this case, the matching model is selected as 
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with δi(k) being the unit pulse sequence. NLL, NRR, NRL, and NLR are numbers of control 
points with subscripts “L” and “R” denoting “left” and “right.” In total, the number of 
control points on the ipsilateral and the contralateral sides is Nc, i.e., 

LL RL RR LR cN N N N N+ = + = . The matching model aims to minimize the response from 
the target source to the contralateral ear. 
 
3.3 Inverse filtering with Tikhonov regularization 

Tikhonov regularization (TIKR) [20] is utilized to solve the MIMO model 
matching problem, M = GH. For an underdetermined and full-rank room response G, 
the minimum-norm least-squares solution is given by 

 
1T T −

 =  H G GG M   (16) 
Although this is an exact solution that gives zero residual errors, some regularization is 
required to limit the gain of the filters. A Tikhonov regularization (TIKR) method can be 
used by solving the following optimization problem: 

 ( )2 22min
F F

β− +
H

GH M H  , (17) 

where 
F
 denotes the Frobenius norm and β is a regularization parameter. It can be 

shown that the optimal solution is 

 
12T Tβ

−
 = + H G G I G M   (18) 

 

4. SPEECH COMMAND RECOGNITION 
4.1 Speech command dataset 

The speech commands dataset provided by Google® [22] is employed in the 
study. The dataset contains 65000 one-second utterances of 30 short words. We use 10 
classes and 10000 records (1000 for each class) as the training set. Pre-processing is 
needed due to the inconsistence of the dataset. Records are all truncated or padded to 1s. 
Furthermore, white noise (40 dB) served as the data augmentation helps training results. 
4.2 Feature extraction 

MFCC has been widely used in automatic speech recognition. By omitting the 
last discrete cosine transform (DCT) step in Mel Frequency Cepstral Coefficient   
(MFCC), Mel Frequency Spectrum Coefficient (MFSC) can be obtained in the Mel-
frequency bands. In this paper, Mel-spectrogram comprised of MFSC sequences is 



employed as the input features for the neural networks. Different frame size and 
hyperparameters of Fast Fourier Transform must be fine-tuned to achieve better results.  

4.3 Network architecture 
CNNs have been extensively used in image recognition. We use VGG-like 

architecture (Fig. 3) that comprises 6 CNNs as the deep learning classifier. The network 
architecture is advantageous in that two concatenated 3×3 convolutional layers are 
capable of producing the same results as one 5×5 layer. Therefore, large-size filters such 
as 11×11 in AlexNet and 7×7 in ZFNet are not required. Furthermore, batch 
normalization which is commonly used in the VGGNet helps to accelerate the training 
phase. In addition, dynamic learning rates such as exponentially decaying learning rates 
or gradient descent with warm restarts [23]) are adopted in this paper. 

 

Fig. 3. VGG-like Network Architecture 

4.4 Inference 
The testing data including 10 classes and 1000 data records (100 for each class) 

are collected under adverse conditions, e.g., with reverberation, noise, and interference. 
The performance of the classifier will be assessed by the F1-score, and confusion matrix 
showing the final results will be discussed in following section. 

 

5.  EXPERIMENTS 

To validate the DOA estimation algorithm, a six-microphone uniform circular 
array with radius 3.2 cm is used in the test. A loudspeaker source is sequentially placed 
at the farfield in 36 positions uniformly spaced around a circle. It turns out that the root-
mean-squares error of the localization results obtained using the DOA estimation 
algorithm in Sec. 2.2 is only 2.64˚.  

The experimental arrangement in a listening room is shown in Fig. 4. A six-
element linear loudspeaker array with 42 cm aperture length is constructed. The 
distance between the array and the listener is 80 cm. Two microphones at the vicinity of 
the ears of an artificial head and torso serve as control points. The impulse response 
matrices G and M in relation to the dynamics of the head and torso, the loudspeakers, 
and the room are measured in advance. The prefilters are calculated on the basis of the 
aforementioned TUMIF approach. 



 
Fig. 4.  Experimental arrangement of the binaural audio rendering system. 
 

The performance of the XTC can be objectively assessed by comparing the channel 
separations between the ipsilateral and contralateral responses with Dcs defined as 

 Dcs = ipsilateral FRF (LL, dB) - contralateral FRF (LR, dB).  (14) 
For simplicity, only the left target source driven with a white noise signal with the 
quiescent right target source is examined in the experiment. The channel separations 
achieved with 3 regularization parameters β are shown in Fig. 5. It can be seen from the 
results that channel separation increases if a small β is used. This suggests that β is a 
crucial parameter to trade channel separation performance for audio quality. 

 
Fig. 5. The measured channel separation of the XTC system from the left target 

source to the ipsilateral and contralateral control points, with the 
regularization parameter, β = 10-6, 10-5, and 10-4. 

 
A listening test is also conducted according to the multiple stimuli with hidden 

reference and anchor (MUSHRA) procedure for the subjective assessment of audio 
quality [24]. The distance between the array and the listener is 80 cm. The 
regularization parameter β used in designing the prefilters is 10-6. The scores of three 
subjective attributes, sense of widening, coloration, and artifacts, processed by the 
analysis of variance (ANOVA) are shown in Fig. 6. It can be seen that all subjective 



indices are significantly improved with the TUMIF approach. 

 
Fig. 6. The ANOVA output of the listening test for XTC. 
 

With the proposed deep learning networks, the F1-score can reach as high as 
0.96 in the testing phase. Compared to others, commands “up” and “off” can often be 
misclassified due to the similarity in the two utterances. As indicated in the confusion 
matrix (Fig. 7) by a red box, the word “off” is recognized as “up” by a probability of 
11%, which is the highest misclassification rate in all classes. The channel mismatch in 
different voice recorders may have contributed to the high misclassification rate. 

 
Fig. 7. Confusion Matrix. 

 

6.  CONCLUSIONS 

A system of entertainment robotic VA is proposed and implemented in this paper. 
A circular microphone array is used to localize the source and extract its signal. Neural 
networks serve as a voice command recognizer. The response is rendered by using 
binaural processing that is implemented on a linear loudspeaker array. By formulating 
the model-matching problem into an underdetermining system, nearly perfect matching 
with mild regularization can be achieved. It is crucial to select the regularization 
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parameter β that strikes a proper balance between match performance and audio quality. 
Experimental result shows that the time-domain method yields better separation 
performance and audio quality than the frequency-domain method.  
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