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ABSTRACT
When conducting experiments in a water tank, the tank wall, is expected to make a
difference on test results. One approach is proposed to get clear the effect of rigid
wall on vibration of typical structure, i.e., finite cylindrical shell. The present
method is verified by conducting comparative analysis on coupled modal
frequencies from present method and the FEM. When the shell is close to rigid
wall, the rigid effect will lead to obvious reduction of coupled modal frequency,
and it could be finally neglected if the distance is large enough.
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1. INTRODUCTION
During an underwater experiment for submerged structures in a water tank, the

tank wall is expected to have an effect on test results. So it’s very important to
investigate the effect of tank wall on structural vibration. The impedance of tank wall is
much larger compared with that of fluid medium, so the wall could be simplified to be
rigid surface.

For the problem of structural vibration in bounded space, many works have been
done. Seybert et al.[1-2] modified the form of Helmholtz integral equation to analyze
acoustic radiation and scattering performance of structure in half-space. Gaunaurd [3]
applied the image method to study acoustic scattering characteristics of a ball near a
infinite plane. Ye et al. [4] applied the wave propagation approach to predict far-field
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sound pressure of a infinite long cylindrical shell submerged near rigid wall. Li et al.[5]
analyzed the acoustic radiation problem of a infinite cylindrical shell submerged below
the free surface. It should be noted that above works are mainly about vibration and
acoustic radiation problem of infinite long cylindrical shell in half-space. Here, one
approach is put forward to analyze the free vibration of a finite cylindrical shell
submerged near a rigid wall.

2. THEORECTICLA DERIVATION

2.1 Margin Settings
Problem considered here is shown in Fig.1. L, R, h are shell length, mean radius

and thickness. E, μ, ρs. are material elastic modulus, Poisson's ratio and density. The
shell axis is parallel to the rigid surface, and the distance is H. A baffled shell model is
applied here, and a cylindrical co-ordinate system (r, θ, z) is also applied.

Fig.1. A cylindrical shell submerged in half-space bounded by a rigid surface
Motion of shell. Referring to the Flügge shell theory [6], motion equations of a

submerged cylindrical shell near a rigid wall may be
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where  G is the differential operator matrix, the elements are described in Reference [6].
u, v, w represent the shell displacements in axial, circumferential and radial directions.

Motion of fluid. Here, the fluid is assumed to be acoustic medium, so sound
pressure in fluid should be governed by the Helmholtz equation [7]

2 2 0fp k p   (2)

where f fk c , fc is the sound speed in the acoustic medium. At the rigid wall,
normal velocity of fluid should be zero, 0p n   .

For problem considered here, the rigid wall will bound fluid and reflect acoustic
wave from shell. So sound pressure in fluid contained two parts, radiated pressure from
the shell and its reflections

r ip p p  (3)

where pr, pi are sound pressure from the shell and its image (in the view of image
method).

Using the wave propagation approach [8], shell displacement and sound pressure
could be expanded in the wave propagation form
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where mnU , mnV , mnW are displacement amplitudes of mode (m, n) in three directions. km is
the axial wave-number. When the finite shell is simply-supported for both ends, km
=mπ/L [9]. Harmonic motion is assumed for problem here. r

mnp , i
mnp are the sound

pressure amplitudes from the shell and its image, (2) ()nH is the nth order Hankel function
of the second kind, 2 2 2

r f mk k k  .

Fig.2. Schematic diagram for the image method
For simplicity of analysis, sound pressure from the image should be rewritten in

the shell coordinate with the Graf additional theory [10]
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where ()nJ is the nth order Bessel function of the first kind.
Continuity condition at the fluid-shell interface require that
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With analysis above, one may derive the sound-structure coupling equation for
problem considered here
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where [ ]T is the coefficient matrix for mode (m, n), and its elements are
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loading term, r iFL FL FL  .
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reflect the effect of rigid wall on structural vibration. By solving the dispersion equation
of Eq.(8), one can predict the natural frequencies of cylindrical shell submerged in fluid
near a rigid wall.

3. NUMERICAL EXAMPLE
Numerical model. L=1.284m, R=0.18m, h=0.003m, ρs =7850 kg/m3 , μ=0.3, E

=206MPa, ρf=1025 kg/m3 , cf=1460 m/s.
Convergence analysis. To calculate FL, the subscript a is set to be

0,1, ,a A …… . Convergence analysis is conducted in case of H=0.2m to ensure good
accuracy, and the result are shown in Fig.3. it’s noted that 10A  is enough to ensure the
convergence of present method.

Fig.3. Convergence analysis of the present method
Validation. The theoretical results are compared with numerical results from the

FEM with ANSYS, comparative results are shown in Table 1. Parameter
2 ( )T F Ff f f   is defined to show the relative differences, while Tf , Ff are result from

present approach and FEM. it is clear that coupled modal frequencies from the present
method generally agree well with those from the FEM. The relative differences are
relatively small, and the maximum is less than 3.7%. So the present method is
reasonable to predict natural frequency of cylindrical shell submerged near rigid wall.

Table 1. Validation of the present method

Mode H=0.15 m H=0.2 m H=0.5 m
fT /Hz fF /Hz η2 /% fT /Hz fF /Hz η2 /% fT /Hz fF /Hz η2 /%

(1,2) 89.7 94.2 -4.8 97.9 98.3 -0.4 98.8 98.5 0.3
(2,2) 105.1 110.2 -4.6 109.2 111.5 -2.1 109.3 111.6 -2.0
(1,3) 196.5 207.7 -5.4 202.3 208.8 -3.1 202.4 209.0 -3.2
(2,3) 210.6 216.4 -2.6 216.9 219.6 -1.2 217.0 219.7 -1.2

Rigid wall effect. To make clear the effect of rigid wall on structural vibration,
comparative analysis on coupled modal frequency in the cases of ‘rigid wall’ and
‘Infinite field’ is carried out, the results are shown in Fig.4.



Fig.4 Rigid wall effect on coupled modal frequency of mode (1,5)
From Fig.4, one can note that coupled modal frequency in the case of ‘Rigid

wall’ is much smaller than that from the case of ‘Infinite field’ when the shell is near the
rigid wall. But, with the increase of distance H, coupled modal frequency in case of
‘Rigid wall’ will increase and approach that in the case of ‘Infinite field’, which means
the reduction of rigid wall effect. So the rigid wall effect could be neglected if the shell
is far enough away.

4. CONCLUSIONS
(1) An effective approach is proposed to analyze the natural vibration of

cylindrical shell with finite length submerged near a rigid wall.
(2) Rigid wall will lead to obvious reduction of coupled modal frequency.
(3) With the increase of distance between shell axis and rigid wall, effect of rigid

wall on coupled modal frequency could finally be neglected.
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