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ABSTRACT 

The three-dimensional vibrations of functionally graded material plates exposed to 

thermal environment are considered based on a novel high-order layerwise theory. 

The formulation is based on the three-dimensional theory of elasticity so that no 

other assumptions on deformations and stresses along the thickness direction are 

introduced. The governing equations of the plates is discretized by modified 

Chebyshev polynomials of first kind in the transfer domain and the remaining 

domains are approximated by spectral method in which each of the fundamental 

unknowns is invariantly expanded as basic functions and the problems are stated in 

a variational form by the aid of penalty parameters which provides complete 

flexibility to describe any specified boundary conditions. FGM plates with 

temperature-dependent material properties subjected to uniform temperature rise, 

linear temperature rise and nonlinear temperature rise are considered. The 

vibration characteristics of the FGM plates at different temperature are brought 

out through parametric study. 
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1. INTRODUCTION 

With the development of new industries and modern processes, functionally 

graded materials (FGMs) have been increasingly utilized to build various structural 

components in many fields of modern engineering practices to satisfy special functional 

requirements due to their outstanding material properties. As is well-known, the practical 

engineering structures may fail and collapse because of material fatigue resulting from 

vibrations. Therefore, it is of particular importance to understand the structural vibration 

and reduce it through proper design. The vibration modal information of FGM structural 

components, such as their natural frequencies and mode shapes, play a vital role in the 

safety evaluation, dynamic analysis and reliable design of the whole engineering  
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structures. Hence, an accurate vibration characteristic determination of the FGM plates is 

essential.  

Heretofore, the vibration analysis of FGM structures has aroused much attention 

in the open literature [1-4]. A variety of theoretical models such as the classical plate 

theory (CPT), the shear deformation plate theories and the three-dimensional plate theory 

had been proposed. The CPT were depended on the well-known Kirchhoff–Love’s 

hypothesis: (i) thin plates; (ii) linear small deformation; (iii) transverse normal stresses 

can be neglected; (iv) straight lines normal to the referential surface do not change during 

deformation. In the CPT, a FGM plate is normally treated as a single-layered thin plate 

referring to its middle surface. It is commonly accepted that they can yield results with 

enough accuracy when the thickness ratio is far less than one. However, the transverse 

stress components are ignored in the CPT. This omission makes them generally 

incompetent for the dynamic modelling of plates which are composed of inhomogeneous 

materials. With the ever-increasing applications of FGM plates, a variety of first-order 

deformation theories (FSDTs) and higher-order deformation theories (HSDTs) have been 

proposed. The FSDTs were developed based on the displacement assumptions of Reissner 

and Mindlin that the in-plane displacements vary linearly across the transverse direction 

while the transversal components remain constant. The FSDTs are more accurate than the 

CPT but they are adequate only for moderately thick FGM plates. To overcome these 

drawbacks, a variety of HSDTs based on nonlinear displacement field assumptions 

through the thickness coordinate have been proposed. The HSDTs are better qualified to 

thin and moderately thick plates than the CPT and FSDTs. However, they are still 

inadequate for thick FGM plates because the transverse normal stain and stress are 

generally been ignored.  

Essentially, the CPT, FSDTs and HSDTs are two-dimensional (2-D) theories on 

the basis of certain kinematic assumptions and equivalent single layer approach. They 

can only predict the flexural modes and are not able to determine the thickness twist and 

shear modes. The presence of material inhomogeneity of FGM plates will result in a 3-D 

stress field in nature. As a consequence, even the 2-D theories are simpler, less memory 

capacity and high velocity, the usage of 3-D elasticity theory is an essential requirement 

in the accurate assessment of their vibration characteristics. 

The rise in temperature reduces both strength and stiffness of FGM. A thorough 

understanding of the effects of temperature in FGM plates is critical in ensuring safety 

design. There seems to be no such solutions available. This paper is therefore devoted to 

the three-dimensional vibration analysis of FGM plates in thermal environment. FGM 

plates with temperature-dependent material properties subjected to uniform temperature 

rise, linear temperature rise and nonlinear temperature rise are considered. The vibration 

characteristics of the FGM plates at different temperature are brought out through 

parametric study. 

 

2.  THEORETIC FORMULATION 

 

2.1 Model description 

The geometry of the FGM plates studied in this work is illustrated in Fig. 1. The 

length, width and thickness of the plate are assumed to be a, b and h, respectively. The 

bottom surface of the plate where an orthogonal coordinate system x, y and z is fixed is 

taken as the reference surface. The x, y and z axes are taken in the length, width and 

thickness directions, respectively. The displacements of the plate in the x, y and z 

directions are denoted by u, v and w, respectively. Consider the FGM plates made from a 

mixture of two material phases, for example, a metal and a ceramic as shown in Fig. 1(b).  



 

 
Fig. 1. Schematic diagram of the rectangular FGM plates: (a) the geometry and 

coordinates; (b) FGM plate of two material phases. 
 

Herein, the top surface of the plate is ceramics-rich whereas the bottom surface is 

metal-rich. Young’s modulus and density per unit volume are assumed to vary 

continuously through the plate thickness according to a power-law distribution as 

 ( , ) ( / ) p

u l lP z T P P z h P                                              (1) 

where P denotes a generic material property, such as elastic modulus E, the Poisson ratio 

, mass density  and thermal expansion coefficient . The subscripts u and l represent 

the corresponding values at the upper and lower constituents. p is the volume fraction 

index that is the positive real value. A typical material property P can be expressed as a 

function of temperature, see Ref. [5] 

 1 2 3

0 1 1 2 31P P P T PT PT PT

                                         (2) 

in which T=T0+T(z) and T0 =300K (room temperature). P0, P-1, P1, P2 and P3 are the 

coefficients of temperature T(K) and are unique to the constituent materials. T(z) is 

temperature rise only through the thickness direction. The thermal conductivity is 

assumed to be temperature independent.  
 

2.2. Kinematic relations and constitutive relation 

According to the 3-D theory of elasticity, the linear strain–displacement relations 

at an arbitrary point in the space of the FGM plate are found to be 
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where x, y and z are the normal strains. yz, xz and xy stand for the shear strain 

components. Stress-strain relations at the point can be derived as  
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in which x, y, z and yz, xz, xy denote the normal and shear stresses. C is the material 

stiffness matrix in the material principal coordinates:  
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From the Modified Chebyshev polynomial based higher-order layerwise theory, 

the displacement field for the considered plate may be represented by 
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where ub, uj, ut,  vb, vj, vt, wb, wj and wt  are the in-plane displacement variables for the 

plate while 
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in which Tj-1 is the j-1 term of the Chebyshev polynomials of  first kind: 

 1 cos[( 1)arccos ], 1,2,jT x j - x j                                 (8) 

Substituting Eq. (6) into Eq. (3) Therefore, the strain–displacement relations can 

be rewritten as 
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Similarly, the stress-strain relations for the plate can be redefined as 
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Therefore, the strain energy Us and kinetic energy Tk can be written in terms of 

strain and stress components as: 
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The thermal stresses for the plate can be written as follows using Eq. (4) 

 
T

1 2 3 23 13 12( )T z                                   (12) 

Therefore, the thermal energy functions of the plate can be expressed as [24]: 
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where nl indicate the nonlinear strain components: 
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The Lagrangian energy function (L) of the FGM plate is expressed in terms of the 

aforementioned energy functions as: 

k s thermalL T U U                                              (15) 

The in-plane displacement variables of the plate can be expressed as follows:  
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in which umn, vmn and wmn are the expansion coefficients. Pm(x) and Pn(y) represent 

the mth and nth Chebyshev polynomials. M and N stand for the total number of 

polynomials considered in the spectral expansion. 

The boundary equations a FGM plate can be defined as: 
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where , , , , , , , , , , ,y y y y y yx x x x x x
l l l l l ll l l l l l

x xy xz xy y yz u v w u v w      are the boundary conditions.  

In this paper, the plate vibration problems are characterized in a modified 

variational form. The variational equation for the plate in the case of free vibration is 

written as  

k s thermal bcL T U U                                                     (18) 

where 
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notations , , , , ,y y yx x x
l l ll l l

u v w u v wk k k k k k  stand for the penalty parameters. hhysically, the 

penalty parameters can be referred to as elastic stiffness along the boundaries, and 

the penalty function (Eq. (19)) is the strain energy associated with the straining of 

this elastic restraint.  

Finally, minimizing Eq. (18) with respect to the coefficients and, the characteristic 

equations for a FGM plate can be finally derived and rearranged in matrix form as 

 2 =K M G 0                                                    (20) 

where K and M are the stiffness and mass matrices. G is the generalized freedom. 

Therefore, the vibration characteristics of the plates can be obtained directly by solving 

Equation (20). 
 

3.  NUMERICAL RESULTS 

In this section, the theoretical formulations presented above have been implemented 

in a MATLAB code to compute the natural frequencies and mode shapes of FGM plates 

with different thicknesses, a variety of boundary conditions to validate and demonstrate 

the flexibility of the proposed high-order layerwise theory. 

Generally, there are three possible combinations of classical boundary conditions at 

each boundary of a plate, i.e., the completely free (F), simply-supported (S), and 

completely clamped (C) restraints. For simplification, a symbolism, e.g., FCSF is used to 

indicate that the plate under consideration have F, C, S, and F boundary conditions 

referred to the boundaries x=0, x=a, y=0 and y=b, respectively. 

Table 1 shows the first eight frequency parameters 2= ( / ) /c cb h E   for square 

Al/Al2O3 FGM plates with SSSS boundary consitons. The material properties are 

EAl2O3=380 GPa, Al2O3=0.3, Al2O3=3800 kg/m, EAl=70 GPa, Al=0.3, Al=2707 kg/m3. 

The volume fraction index  is considered to be 0, 1, 5. The plate is assumed to be 

moderately thick, i.e., h/a=0.1. The plates are exposed to room temperature. The 3-D 

solutions Published  by Huang et al. [6] are also shown in Table 1. Huang et al. [6] 

employed  a Ritz method. From the table ,we can see that the presnt theory convege 

quickly and mach well with solutions published by Huang et al. [6].  
 

Table 1. Frequency parameters 2= ( / ) /c cb h E   for moderately thick, Al/Al2O3 

FGM square plateswith SSSS boundary congdiotns.  . 

p J 
Mode 

1 2 3 4 5 6 7 8 

0 

0 6.381  15.21  15.21  19.48  19.48  23.33  27.55  28.42  

1 5.794  13.90  13.90  19.48  19.48  21.43  26.18  26.18  

2 5.776  13.80  13.80  19.48  19.48  21.21  25.87  25.87  

3 5.776  13.80  13.80  19.48  19.48  21.21  25.87  25.87  

4 5.776  13.80  13.80  19.48  19.48  21.21  25.87  25.87  

3-D [6] 5.777  13.81  13.81  19.48  19.48     

          

1 
0 4.889  11.71  11.71  16.20  16.20  18.02  22.00  22.00  

1 4.434  10.67  10.67  16.20  16.20  16.50  20.19  20.19  



2 4.426  10.63  10.63  16.20  16.20  16.40  20.04  20.04  

3 4.426  10.63  10.63  16.20  16.20  16.39  20.04  20.04  

4 4.426  10.63  10.63  16.20  16.20  16.39  20.04  20.04  

3-D [6] 4.426  10.63  10.63  16.20  16.20     

          

5 

0 4.190  9.960  9.960  12.64  12.64  15.24  17.86  18.54  

1 3.795  9.050  9.050  12.64  12.64  13.89  16.92  16.92  

2 3.773  8.933  8.933  12.64  12.64  13.63  16.56  16.56  

3 3.772  8.929  8.929  12.64  12.64  13.62  16.55  16.55  

4 3.771  8.927  8.927  12.64  12.64  13.62  16.54  16.54  

3-D [6] 3.772  8.93  8.93  12.64  12.64        

 

Table 2 shows the first seven frequency parameters 
2= /b h D   for square 

isotropic plates with different boundary conditions. The thickness ratio is selected as 

h/a=0.1 and the material properties are E=210 GPa,  =0.3,  =7800 kg/m. The plates are 

exposed to room temperature. The results are compared with other published solutions by 

using the 3-D Ritz method with modified Fourier series polynomials [7]. It is seen that 

the present results are in good agreement with Refernce [7]. In general, the present 

solutions agree very well with those available in the literature. From Tables 1-2, it can be 

conculde that the poposed high-order layerwise theory is sufficient for the 3-D vibration 

analysis of FGM plates with different boundary conditions. 
 

Table 2. Frequency parameters 
2= /b h D   for moderately thick isotropic square 

plateswith FFFF and SSSS boundary congdiotns.   

B.C. MN 
Mode 

1 2 3 4 5 6 7 

FFFF 

99 12.738 18.955 23.346 31.975 31.975 55.498 55.498 

1010 12.725 18.955 23.345 31.965 31.965 55.492 55.492 

1111 12.725 18.954 23.345 31.957 31.957 55.490 55.490 

1212 12.723 18.955 23.345 31.956 31.956 55.490 55.490 

1313 12.723 18.954 23.345 31.955 31.955 55.490 55.490 

1414 12.723 18.954 23.345 31.955 31.955 55.489 55.489 

1515 12.723 18.954 23.345 31.954 31.954 55.489 55.489 

3-D [7] 12.728 18.956 23.346 31.965 31.965 55.493 55.493 

         

SSSS 

99 19.088 45.616 45.616 64.369 64.369 70.097 85.497 

1010 19.088 45.616 45.616 64.369 64.369 70.096 85.488 

1111 19.088 45.616 45.616 64.369 64.369 70.096 85.483 

1212 19.088 45.616 45.616 64.369 64.369 70.096 85.483 

1313 19.088 45.616 45.616 64.369 64.369 70.096 85.483 

1414 19.088 45.616 45.616 64.369 64.369 70.096 85.483 

1515 19.088 45.616 45.616 64.369 64.369 70.096 85.483 

3-D [7] 19.098 45.636 45.636 64.384 64.384 70.149 85.500 

 

Table 3 shows the numerical results of frequency parameters of the first six modes 

for Si3N4/SUS304 FGM square plates subjected to CCCC boundary conditions uniform 

temperature rise with the results published by other researchers [5, 7, 8]. The material 



properties are given in Table 4. The plate is assumed to be moderately thick with thickness 

ratio of h/b =0.1. 
 

Table 3. Comparisons of first six natural frequency parameters for Si3N4/SUS304 FGM 

square plates subjected to CCCC boundary conditions and uniform temperature rise 

(a=0.2m, h/b =0.1, k=2.0, T0=300 K). 

T Solutions 
 Mode 

1 2 3 4 5 6 

0 

Present 4.1116 7.8497 7.8497 11.009 12.976 13.100 

HSDT[8] 4.1062 7.8902 7.8902 11.183 12.588 13.187 

HSDT[5] 4.1165 7.9696 7.9696 11.220 13.106 13.209 

3-D[9] 4.1658 7.9389 7.9389 11.121 13.097 13.223 

        

300 

Present 3.6708 7.2202 7.2202 10.234 12.117 12.245 

HSDT[8] 3.6636 7.2544 7.2544 10.3924 11.705 12.318 

HSDT[5] 3.6593 7.3098 7.3098 10.4021 12.198 12.305 

3-D[9] 3.7202 7.3010 7.3010 10.3348 12.226 12.356 

        

500 

Present 3.2431 6.5966 6.5966 9.4504 11.237 11.370 

HSDT[8] 3.2357 6.6281 6.6281 9.5900 10.829 11.435 

HSDT[5] 3.2147 6.6561 6.6561 9.5761 11.271 11.381 

3-D[9] 3.2741 6.6509 6.6509 9.5192 11.313 11.447 

 

Table 4. Temperature-dependent coefficients of elastic modulus E (Gha), hoisson’s ratio 

, mass density  (kg/m3), and thermal expansion coefficient  (1/K) for ceramics and 

metals (from Ref. [10]). 
 Material  P0  P-1  P1  P2  P3 

E 
SUS304 0 201.04 3.08E-04 -6.53E-07 0 

Si3N4 0 348.43 -3.07E-04 2.16E-07 -8.95E-11 

       

 
SUS304 0 0.3262 -2.00E-04 3.79E-07 0 

Si3N4 0 0.24 0.00E+00 0 0 

       

 
SUS304 0 8166 0 0 0 

Si3N4 0 2370 0 0 0 

       

 
SUS304 0 1.23E-05 8.09E-06 0 0 

Si3N4 0 5.87E-06 9.10E-06 0 0 

 

4.  CONCLUSIONS 

In this paper, a novel high-order layerwise theory has been developed for the 

vibration analysis of FGM plates with general boundary conditions and exposed to 

thermal environment. The formulation is based on the three-dimensional theory of 

elasticity so that no other assumptions on deformations and stresses along the thickness 

direction are introduced. The governing equations of the plates is discretized by modified 

Chebyshev polynomials of first kind in the transfer domain and the remaining domains 

are approximated by spectral method. The penalty technique is introduced to release the 

requirement of boundary conditions such that it is able to provide complete ability to 

satisfy any specified boundary conditions. The convergence, accuracy and reliability of 



the theory are validated. It is shown that our results meet well with data reported by other 

researchers. 
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