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ABSTRACT

The eigenbeam (EB)-ESPRIT is one of the popular parametric direction-of-
arrival (DOA) estimation techniques for a spherical microphone array. The
EB-ESPRIT directly estimates the directional parameters by using a single
recurrence relation of spherical harmonics, and has also been applied for the
localization of early reflections in a reverberant environment. However, there are
couple of limitations that hinder the use of the EB-ESPRIT for a real room data.
The EB-ESPRIT exhibits a matrix ill-conditioning problem for sources positioned
near the equator of the spherical coordinates, which can frequently occur by
echoes impinging from those angles. Furthermore, the number of simultaneously
detectable sources is also limited. To overcome these limitations, the vector-based
EB-ESPRIT technique was introduced by utilizing three recurrence relations of
spherical harmonics corresponding to x-, y-, and z- components of a vector in the
Cartesian coordinates. In this work, we conduct experiments in a real reverberant
room to validate the performance of vector-based EB-ESPRIT, and demonstrate
that the vector-based EB-ESPRIT can successfully localize the first-order echoes
from the data recorded in the reverberant room.
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1. INTRODUCTION

The directions-of-arrival (DOAs) estimation of sound sources using a spherical
microphone array (SMA) has been investigated as an essential part of room
acoustics [1] [2]. The sound field captured by a SMA can be transformed into the
spherical harmonic domain (SHD) data or eigen-beams (EB) and processed by various
eigenbeam techniques. Using the eigenbeam-based beamformer approach, Sun et al.
estimated distinct room reflections [3] in a reverberant room. Using the room impulse
responses measured by SMA, Tervo et al. presented the eigenbeam maximum likelihood
(ML) method for DOA estimation of coherent acoustic reflections [4]. Mabande et al.
studied the room geometry inference by using the eigenbeam-based beamformers and the
time differences of arrivals (TDOAs) [5].

Unlike the beamformer-based techniques, the eigenbeam estimation of signal
parameters via the rotational invariance technique (EB-ESPRIT) has an advantage that it
does not need to an exhaustive grid search [6]. The EB-ESPRIT uses a single recurrence
relation of spherical harmonics to estimate the DOAs in a parametric way. However, as
the EB-ESPRIT has a matrix ill-conditioning problem and can detect a limited number of
sources [7], the DOA estimation of acoustic reflections in a reverberant room is impeded,
in practice.

There have been several works to overcome these problems. For instance, to
avoid the ill-conditioning problem, Sun et al. proposed the rotation of the reference
coordinates [7], and Huang et al. proposed two-step spherical harmonics ESPRIT-type
algorithms [8]. A nonsingular EB-ESPRIT using the two sine-based recurrence relations
of spherical harmonics was also presented by authors [9]. However, all these methods are
accompanied by some problems. For the coordinates rotation, for instances, one should
determine the proper rotation angle for each axis, and even after rotation the sound
sources can still be on the equator. The two-step methods require additional elevation
and azimuth pairing algorithms. Furthermore, due to the properties of the elevation
parameters, both two-step methods and nonsingular EB-ESPRIT have fundamental
degradation near the equator and poles, respectively.

In this work, we propose the vector-based EB-ESPRIT that uses three independent
recurrence relations of spherical harmonics [10]. From the three recurrence relations, the
directional vectors of early reflections in Cartesian coordinates are uniquely extracted,
and hence, the proposed method is not induced any singularity problem. Furthermore, by
utilizing a common transformation matrix, we directly estimate DOAs in a single stage
without any pairing algorithms. For the performance validation in a real environment,
we carried out experiments in a reverberant room with varying reverberation times (T60).
The experimental results in a real room show that the proposed EB-ESPRIT can estimate
DOAs of early reflections successfully within reasonably small errors.

2. SPHERICAL HARMONIC DOMAIN PROCESSING

First, the sound field is measured by a SMA in order to estimate DOAs of early
reflections. Suppose that the radius of SMA is r, and capturing position is given by
(r, θ, φ) in the spherical coordinates. Then, the sound field of frequency ω captured by



SMA at (r, θ, φ) can be described as a weighted summation of the spherical harmonics [1]

p(k, r, θ, φ) =

∞∑
n=0

n∑
m=−n

pnm(k, r)Ym
n (θ, φ), (1)

where k = ω/c (c: sound speed) is the wavenumber, and Ym
n (·) denotes the spherical

harmonics with order n and degree m,

Ym
n (θ, φ) =

√
(2n + 1)(n − m)!

4π(n + m)!
Pm

n (cos θ)eimφ. (2)

Here, Pm
n (·) is the associated Legendre function.

The captured data transformed into the SHD, called spherical harmonic coefficients
pnm (k, r), can be computed from the measured data p(k, r, θ, φ) by using the spherical
Fourier transform (SFT) as

pmm(k, r) =

∫ 2π

0

∫ π

0
p(k, r, θ, φ)[Ym

n (θ, φ)]∗ sin θdθdφ, (3)

where (·)∗ denotes the complex conjugate.
When D multiple plane waves are simultaneously incident on the SMA, the spherical

harmonic coefficients can be derived as

pnm(k, r) =

D∑
d=1

bn(kr)[Ym
n (Ωd

s )]
∗
sd(k), (4)

where sd(k) and Ωd
s = (θd

s , φ
d
s ) denote the complex amplitudes and DOAs of sources,

respectively. The mode strength is represented as bn(kr), which depends on the radius
and the boundary condition of the SMA. For this work, we use the SMA with the rigid
boundary condition (bn(kr) = 4πin+1/[(kr)2h(1)′

n (kr)]), where h(1)′
n (·) is the derivative

of a spherical Henkel function of the first kind [1]. In order to do the EB processing
with frequency-independent eigenbeams, the mode strength compensation should be
accompanied as follows [2],

anm(k) = pnm(k, r)/bn(kr) =

D∑
d=1

[Ym
n (Ωd

s )]
∗
sd(k). (5)

The mode strength compensated data named the directional harmonic coefficients
anm(k) can be extracted up to a limited order of spherical harmonics (N) because the
sound field is discretely sampled with a limited number of microphones in practice. In
this manner, anm(k) can be re-written in a vector form up to the harmonics order N as

a(k) = YHs(k), (6)

where a(k) = [a0,0(k), a1,−1(k), · · · , aN,N(k)]T ∈ C(N+1)2×1, s(k) = [s1(k), · · · , sD(k)]T

∈ CD×1, and YH ∈ C(N+1)2×D is the array manifold matrix in the SHD whose d-th column
is given by

y
(
Ω(d)

s

)
= [Y0

0 (Ωd
s )︸ ︷︷ ︸

n=0

, Y−1
1 (Ωd

s ),Y0
1 (Ωd

s ),Y1
1 (Ωd

s )︸                         ︷︷                         ︸
n=1

, · · · , Y−N
N (Ωd

s ), · · · , YN
N (Ωd

s )︸                        ︷︷                        ︸
n=N

]H, (7)



where {·}H denotes the conjugate transpose.
For the EB processing, a covariance matrix should be constructed first. From multiple

snapshots or observations, the covariance matrix can be computed as follows,

R(k) = E{a(k)a(k)H} = YHE{s(k)s(k)H}Y, (8)

where E{·} denotes the expectation operator.
For de-correlating the coherent early reflections due to distinct walls, smoothing

techniques should be applied. The spherical harmonics ESPRIT-type algorithms
( [6], [8], [9]) can estimate DOAs of early echoes in a reverberant environment by using
the smoothing techniques such as frequency smoothing [11], temporal smoothing [12],
modal smoothing [13], and spherical harmonic smoothing [14]. In this work, the
smoothed covariance matrix R̄ is constructed by averaging the time-frequency (TF) data
as

R̄ =
1

JtJ f

Jt∑
t=1

J f∑
f =1

at( f )aH
t ( f ), (9)

where Jt and J f denote the total number of time frames and frequency bins.

3. VECTOR-BASED EB-ESPRIT

Unlike the conventional EB-ESPRIT [6] and other spherical harmonics ESPRIT-type
algorithms [8] [9], the vector-based EB-ESPRIT utilizes three recurrence relations of
spherical harmonics as follows [15],

sin θseiφs[Ym
n (Ωs)]∗ = wm−1

n+1 [Ym−1
n+1 (Ωs)]∗ − w−m

n [Ym−1
n−1 (Ωs)]∗

sin θse−iφs[Ym
n (Ωs)]∗ = −w−(m+1)

n+1 [Ym+1
n+1 (Ωs)]∗ + wm

n [Ym+1
n−1 (Ωs)]∗

cos θs[Ym
n (Ωs)]∗ = vm

n [Ym
n−1(Ωs)]∗ + vm

n+1[Ym
n+1(Ωs)]∗,

(10)

where

wm
n =

√
(n − m − 1)(n − m)/(2n − 1)(2n + 1)

vm
n =

√
(n − m)(n + m)/(2n − 1)(2n + 1).

(11)

In order to jointly utilize three recurrence relations with different orders, three relations
are re-written in a matrix form with the shifted and order-reduced harmonic matrix Y(µ,ν)

Y(0,0)HΦxy+ = Wm−1
n+1 Y(+1,−1)H −W−m

n Y(−1,−1)H

Y(0,0)HΦxy− = −W−(m+1)
n+1 Y(+1,+1)H + Wm

n Y(−1,+1)H

Y(0,0)HΦz = Vm
n Y(−1,0)H + Vm

n+1Y(+1,0)H,

(12)

where Φxy+, Φxy− , and Φz are D × D complex-valued diagonal matrices containing
directional parameters (sin θd

s eiφd
s , sin θd

s e−iφd
s , and cos θd

s ). Wm+ν
n+µ and Vm+ν

n+µ are N2 × N2



real-valued diagonal matrices containing wm+ν
n+µ and vm+ν

n+µ , respectively. The d-th column of
Y(µ,ν)H ∈ CN2×D is given by

yνµ
(
Ω(d)

s

)
=[Y0+ν

0+µ(Ω(d)
s )︸     ︷︷     ︸

n=0

, Y−1+ν
1+µ (Ω(d)

s ), Y0+ν
1+µ(Ω(d)

s ), Y1+ν
1+µ(Ω(d)

s )︸                                        ︷︷                                        ︸
n=1

, · · · ,

Y−(N−1)+ν
(N−1)+µ (Ω(d)

s ), · · · , Y (N−1)+ν
(N−1)+µ(Ω(d)

s )︸                                        ︷︷                                        ︸
n=N−1

]H.
(13)

The goal of this algorithm is estimating the directional parameter matricesΦxy+, Φxy−,
and Φz. However, the shifted harmonic matrices Y(µ,ν)H in the Equation 12 cannot be
obtained from the measurement data. Instead, we utilize a relation between the signal
eigenvector matrix Us and array manifold matrix YH in SHD as follows [6],

Us = YHT, (14)

where Us is the signal eigenvector matrix that can be computed by extracting eigenvectors
corresponding D largest eigenvalues from the covariance matrix, and the transformation
matrix T is the invertible D × D matrix. Using the Equation 14, the Equation 12 is re-
formulated with respect to Us as

U(0,0)
s Ψxy+ = Wm−1

n+1 U(+1,−1)
s −W−m

n U(−1,−1)
s︸                              ︷︷                              ︸

Λxy+

U(0,0)
s Ψxy− = −W−(m+1)

n+1 U(+1,+1)
s + Wm

n U(−1,+1)
s︸                                  ︷︷                                  ︸

Λxy−

U(0,0)
s Ψz = Vm

n U(−1,0)
s + Vm

n+1U(+1,0)
s︸                       ︷︷                       ︸

Λz

,

(15)

where Ψ∆ = T−1Φ∆T (∆ = {xy+, xy−, z}) are transformed directional parameter
matrices.

The Equation 15 can be solved with respect to Ψ∆ by the least-squares solutions under
N2 ≥ D as follows,

Ψ̂∆ = {U(0,0)
s }†Λ∆, (16)

where (·)† denotes the Moore-Penrose inverse operator. From the condition (N2 ≥ D),
the number of detectable sources (Dmax) is determined to N2, which is larger than
conventional EB-ESPRIT (Dmax = (N − 1)2) and two-step EB-ESPRIT(Dmax =

⌊
N2/2

⌋
),

and smaller than nonsingular EB-ESPRIT (Dmax =
⌊
N2 + N/2

⌋
).

Instead of extracting the eigenvalues of Ψ̂∆ matrices separately ( [6], [8], [9]), we
utilize the left eigenvector matrix (Uxy+) of Ψxy+ (= Uxy+Φxy+U−1

xy+) matrix as a common
transformation matrix to estimate the directional parameter matrices Φxy+, Φxy−, and Φz

as follows,

Φ̂xy+ = U−1
xy+Ψxy+Uxy+

Φ̂xy− = U−1
xy+Ψxy−Uxy+

Φ̂z = U−1
xy+ΨzUxy+.

(17)



Let the diagonal components of the estimated directional parameter matrices (Φ̂∆) as
[Φ̂xy+]d,d = Φ̂d

xy+, [Φ̂xy−]d,d = Φ̂d
xy−, and [Φ̂z]d,d = Φ̂d

z . Then, the DOA of the d-th source
can be computed from the directional vector in the Cartesian coordinate ([xd

s , y
d
s , z

d
s ] =

Re{[(Φ̂d
xy+ + Φ̂d

xy−)/2, (Φ̂
d
xy+ − Φ̂d

xy−)/2i, Φ̂d
z ]}) as

θ̂d
s = atan2

{√
(xd

s )2
+ (yd

s )2, zd
s

}
φ̂d

s = atan2{yd
s , x

d
s },

(18)

for all sources (d = 1, · · · , D). Re{·} extracts the real part of the argument and atan2{·, ·}
is a four-quadrant inverse tangent with two variables.

4. PERFORMANCE EVALUATION

4.1. Setup

To validate the echo localization performance, we conducted a series of experiments
in the real room environment. For comparison with the ideal situation, we carried out
simulations with the same room setup and reverberation times. The impulse responses
of the ideal simulation environment were generated with a spherical microphone array
impulse response generator [16] and convolved with the white Gaussian noise to generate
the simulated microphone data. The baselines to compare this work were the semi-
RTS-SHESPRIT (real-valued two-step spherical harmonics ESPRIT) [8] and sine-based
EB-ESPRIT [9]. Note that the conventional EB-ESPRIT [6] is not included because it
cannot estimate enough number of early reflections. The EB-MUSIC spectrum was used
for resolving the ambiguity problem of the sine-based EB-ESPRIT. For the semi-RTS-
SHESPRIT, the pairing of elevation and azimuth angles was done by choosing the best
matches with true DOAs.

A stationary white Gaussian noise was consistently played as a direct sound. The
SMA signals were measured for 5 seconds and sampled at 48 kHz. The directional
harmonic coefficients were generated by SFT, and short time Fourier transform (STFT)

Figure 1: The measurement setup



Table 1: Ground truth DOAs of the direct sound and early reflections in a room

with Hanning window of 480 samples (10 ms) in length, a hop size of 240 samples (5
ms), and DFT size of 512.

The measurement setup is described in Figure 1. The height of the room was 2.52 m,
and the height of the center of the SMA and loudspeaker unit were set to 1.08 m. The
SMA used to capture the sound field in the room was the Eigenmike

R©
, which has 32

calibrated microphones placed on the rigid spherical body with a radius of r = 0.042 m.
The sound field was decomposed up to the fourth-order of spherical harmonics (N = 4)
to secure enough number of detectable sources for localizing early reflections of all
comparing algorithms (Semi-RTS SHESPRIT: Dmax = 9, sine-based EB-ESPRIT: Dmax =

18, proposed algorithm: Dmax = 16). For a sound source, a 1-inch full-range loudspeaker
unit with custom enclosure of 40 cc volume was used. For de-correlating early reflections,
the covariance matrix was averaged over all time-frames and frequency range within
0.65–3.9 kHz range(kr ∈ [0.5, 3]).

The signal-to-noise ratio (SNR) with respect to the background noise and microphone
self-noise was maintained around 48 dB within the frequency of interest. For the error
analysis, the ground truth DOAs of direct sound and early reflections are computed from
the known wall locations and their first-order image source positions (Table 1). The
angular estimation errors between the true and estimated DOAs are computed as ∆Ωd

s =

cos−1
(
cos θd

s cos θ̂d
s + cos(φd

s − φ̂
d
s ) sin θd

s sin θ̂d
s

)
. To evaluate the localization performance

of the proposed method in practical acoustic environments, three reverberation times were
considered (T60 = 0.22, 0.35, and 0.46 s) by changing the number of absorption boards
(Figure 2). The noise reduction coefficient (NRC) of the absorption board is around 0.75.

The directional harmonic coefficients a(k) were computed by compensating with the
soft-limiting regularization filter [17] of 25 dB maximum allowed amplification, in order
to prevent the excessive amplification of high order harmonics in the low sensitivity
regions. The soft-limiting filter in the frequency domain dn(kr) is constructed as follows

Figure 2: Experimental configurations: spherical array and loudspeaker arrangement in
a room. Left: T60 = 0.22 s. Right: T60 = 0.46 s.



Figure 3: Magnitude of 1/bn(kr) and dn(kr) with orders of n = 0 to 4

(Figure 3),

dn(kr) =
2 · 105/4

π

|bn(kr)|
bn(kr)

tan−1
(

π

2 · 105/4 · |bn(kr)|

)
. (19)

4.2. Results

In Figure 4, the root mean squares of the angular estimation errors are shown with
three different T60. In the simulation results, the errors of two baselines (Sine-based EB-
ESPRIT and Semi-RTS-SHESPRIT) increase as the reverberation time increases. By
contrast, the proposed algorithm does not have such tendency and outperforms other
algorithms with quite low errors of under 10◦ in all T60 conditions. In the experimental
results, the relation between the accuracy and reverberation time is rather weak, and errors
of all algorithms increase. Despite the fact that the error of the proposed algorithm in
T60 = 0.22 s is rather high (about 15◦) compared to the simulation, the vector-based
EB-ESPRIT still outperforms other algorithms in all T60 conditions.

To investigate errors of different early reflections separately, the estimation errors of
the direct sound and the different walls were examined for the T60 = 0.46 s condition

Figure 4: Angular estimation errors for different T60. Left: Simulation results. Right:
Experimental results.



Figure 5: Estimation errors of direct sound and early reflections with T60 = 0.46 s. Left:
Simulation results. Right: Experimental results.

(Figure 5). As described in the previous articles [8] [9], the performance degradation
near the equator (θ = 90◦: Direct, Wall2, Wall3, Wall4) of the sine-based EB-ESPRIT
can be observed due to the slow rate of change of the sine function near the equator in
the simulation results. Likewise, the errors of the early reflections near the poles (θ =

0◦, 180◦: Ceiling and Floor) of the semi-RTS-SHESPRIT are higher than those of other
early reflections except for the wall 2. It is because of the slow rate of change of the cosine
function near the poles. The exceptional result of the wall 2 may be caused by the high
contribution of the 2nd or higher reflections. Those tendencies can also be observed in
the experimental results except for the wall 4. Although overall errors of three algorithms
increase in the experiments, the performances of the proposed algorithm are still better on
average than others in both simulation and experiment results.

5. CONCLUSION

The vector-based EB-ESPRIT utilizes three different recurrence relations of spherical
harmonics corresponding to the axis-directed vectors in the Cartesian coordinates. By
utilizing all measured data in SHD and uses the atan2 function, the vector-based EB-
ESPRIT can resolve major problems of the conventional EB-ESPRIT. In this work, we
showed that the vector-based EB-ESPRIT not only can estimate enough number of early
echoes but also outperforms other algorithms in terms of estimation accuracy. Through
the analysis of simulation and experimental data acquired from different reverberation
conditions, we demonstrated that the estimation performance of the vector-based EB-
ESPRIT outperforms other baseline algorithms in the reverberant environment.
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