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ABSTRACT

The characterization of vibroacoustic sources using microphone arrays in the
time domain is still challenging because of the bad conditioning and extensive
computational resources required to solve the associated ill-posed problem. The
Near-field Acoustical Holography (NAH) framework and the Time-Reversal
techniques are among the approaches proposed to solve this problem. However,
such techniques involve either dense microphone arrays in the vicinity of the sources
to be characterized or high computational complexity. This work proposes a new
Time-Domain Phase Coherence algorithm (TD-PCa) based on the phase coherence
principle widely used in the fields of image processing and ultrasound imaging. The
proposed TD-PCa is numerically and experimentally validated using a regular 121
microphone array located in front of an impacted, baffled, simply-supported plate
in an anechoic chamber. The resulting vibration field is reconstructed with the
proposed TD-PCa and compared with the vibration field estimated with the Delay-
and-Sum (DAS) standard approach. Moreover, the imaging results are compared
with vibration field measurements conducted on the plate using the deflectometry
technique with a high-speed camera. The results show that the acceleration field
reconstructed with the proposed TD-PCa is in good agreement with the vibration
field measured optically.
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1. INTRODUCTION

Acoustic source characterization in terms of location and magnitude is a wide branch
of engineering acoustics. A complete field of research related to the imaging and
characterization of noise sources has emerged in the last decades [1]. While stationary
noise sources can be identified with measurements made using a sound intensity
probe [2] or a microphone array [3], the identification of transient noise sources is a
more challenging problem. It is well known that impacts or squeal noise are common
in industrial environments and that they can be harmful to workers. The monitoring
of transient noise sources is also of great interest in the transportation industry, where
unsteady excitation sources such as turbulent flows are common.

1.1. Acoustic imaging

In order to improve the spatial resolution and dynamic range, as required to accurately
characterize multiple point-like noise sources, many approaches based on microphone
arrays have been proposed. A recent review paper proposes an objective comparison
of the most commonly used techniques [4] throughout a unified formalism. Among
the techniques proposed in the literature to reconstruct time varying structural vibration
fields, Near-field Acoustical Holography (NAH), Time Reversal (TR) approaches and
direct beamforming techniques such as Delay-and-Sum (DAS) are the most widely
used. However, NAH methods require dense microphone arrays in the vicinity of the
source plane, which can be problematic in several practical situations. Despite the
low computational cost of the DAS, this method cannot be used for spatially extended
vibration source characterization since velocity reconstruction at a given source point is
obtained under the hypothesis that this point behaves as the only radiating point source.
Hence, DAS is not suited for extended noise source characterization and is mostly used
as a qualitative tool for noise source localization. On the other hand, TR technique
potentially requires the use of complex models for simulating wave propagation in the
considered acoustic medium [5]. Consequently, the development of an algorithm for the
reconstruction of transient sources in the time domain is still relevant and is particularly
of interest for the transportation industry.

1.2. Phase coherence

The importance of phase in signals has been recognized and widely used by
researchers in optics and image processing. For instance, it is now well known that most
of the information from a greyscale image lies in the phase and not in the amplitude
of grey levels, contrary to what one would intuitively expect [7]. Although considered
for decades in image processing, the idea of mainly exploiting the phase content of
the signals was only recently applied in ultrasound imaging. Phase coherence (PC)
imaging uses the phase measured by an array of receivers to define a coherence factor
(0 ≤ F ≤ 1) that represents the similitude of the phases measured, and thus the
likelihood of a source (or reflector) at the considered position [8]. The most employed
coherence factors are all defined as functions of the instantaneous phase, its variance
and standard deviation calculated among all receivers [8]. Although the concept of
instantaneous phase is ambiguous in the time domain, it is well known that steep changes
in the phase between subsequent time samples (changes in the sign for instance) carry



much information about the propagation medium. Already used in non-destructive
evaluation and in medical imaging, phase coherence imaging is promising for real-time
imaging since it allows increasing both the dynamic range and image resolution [9].

In the audible acoustic range, recent work using the generalized cross correlation and
steered response power algorithms shows that the use of the Phase Transform (PHAT)
results in an increased resolution and in a wider dynamic range. However, when using
PHAT filtering, the magnitude of the signals used for absolute sound pressure level
reconstruction is lost [10]. Due to their high degree of parallelizability on graphics
processor units, these formulations are well suited for real-time imaging [11]. However,
the few acoustic imaging algorithms proposed in the literature that use phase filtering
have either been developed in the frequency domain, or are not well suited for time
domain reconstruction of transient or unsteady events because of the loss of information
on the source magnitude [12].

In the present paper, a time domain imaging algorithm that allows for vibration
reconstruction of a transient extended source based on the concept of PC is proposed.
The proposed algorithm and the framework used throughout the paper are presented in
Section 2. In Section 3, a numerical and an experimental validation of the algorithm is
proposed for the case of a simply-supported impacted panel. In both cases, the proposed
algorithm is compared with the standard DAS method and with the original acceleration
field. Experimentally, the acceleration field acting as the reference (ground truth) is
reconstructed using a direct optical deflectometry measurement.

2. TIME-DOMAIN PHASE COHERENCE ALGORITHM

As depicted in Figure 1, a regular array of M microphones is positioned at z = zm

above an imaging plane located at z0 = 0. The latter is discretized into N elemental sound
radiating elements of identical areas (Ae).
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an(t) =a(xn,yn,z0,t)

Pm(t) = P(xm,ym,zm,t)

Source plane

Figure 1: Imaging setup consisting of a regular microphone array to measure the acoustic
pressure Pm(t) above an imaging domain that contains a planar acceleration source
distribution an(t).

Under the hypothesis that the side length of each square element is smaller than half of
the smallest structural wavelength considered, each sound radiating element can be seen



as a discrete source monopole. In that case, the measured sound pressure at microphone
m can be approximated by :

Pm(t) = ρoAe

N∑
n=1

δ(t − Rmn/c)
2πRmn

? an(t), (1)

where ? is the convolution operator, Rmn is the Euclidean distance between microphone m
positioned at [xm, ym, zm] and source monopole n positioned at [xn, yn, z0], ρ0 is the density
of the acoustic medium, c is the sound velocity in air and an(t) is the normal acceleration
of the source monopole n. Before deriving a coherence metric, let us first consider the
sole contribution of the pixel n to the sound pressure at microphone m and rewrite it as:

Pmn =
ρ0Ae

2π
gmnan (2)

where Pmn and an are column time vectors and where gmn is a real-valued sparse matrix
whose non-zero diagonal starts at line Lmn = bRmn/(c∆t)e (in which b. . .e is the rounding
operator and ∆t is the inverse of the sampling frequency):

gmn =
1

Rmn

[
0(Lmn,K−Lmn) 0(Lmn,Lmn)

I(K−Lmn,K−Lmn) 0(K−Lmn,Lmn)

]
(3)

In gmn, 0 and I denote the null and identity matrices and K is the number of time samples
from the first noise event (t0) to the last measurement on the array (tK−1). The emptiness
of the upper part of gmn is explained by the causality principle. The rounding operator
is used to snap the propagation delay Rmn/c to the closest discrete time sample. Adding
the contribution of all source monopoles contained in the imaging domain to the sound
pressure at microphone m and concatenating all (single microphone) linear systems
together, one obtains :

P =
ρ0Ae

2π
GA (4)

where P is a MK vector that denotes the pressure signals at each microphone for the whole
time span and G is a MK ×NK matrix that represents the propagation matrix between the
acceleration sources and the sound pressure measurements:

P =



P1
...

Pm
...

PM


; G =



G1
...

Gm
...

GM


=


g11 . . . g1N
...

...
gM1 . . . gMN

 ; (5)

This formalism is sometimes used in NAH where the spatial discretization of the
imaging plane coincides well with the spatial discretization of the microphone array,
resulting in well-conditioned systems [13]. However, in our case, the under-determination
of the linear problem in Equation 4 results in a clearly ill-posed problem. To illustrate this,
the case of a time span of 500 samples over a 121 microphone array combined with a 1000
pixel reconstruction grid results in a matrix G of dimensions [60 500× 500 000] (i.e. 500
000 unknowns) which requires a system shrinking phase prior to the inversion in order
to become solvable. Indeed, the size reduction of A could help reduce the ill-posedness
of Equation 4 and also accelerate the solution computation through the reduction of the



dimensions of G. To accomplish this, as for the PC filters used in ultrasound imaging [8],
let us define a statistical metric on the instantaneous phase of the M acoustic pressure
signals measured at time sample ti for pixel n:

PC(n, ti) =

∣∣∣∣∣∣∣ 1
M

M∑
m=1

P̃m(ti + Rmn/c)
Rmn

∣∣∣∣∣∣∣ (6)

where z̃ = z + jH(z) is the analytic representation of z(n, t) in which j =
√
−1 and H(·) is

the Hilbert transform operator. This metric calculates the average phasor of the analytical
signal over the whole microphone array and its objective is to help identify the pixels that
are more likely to contribute to the measured pressure field. Hence, the first step of the
proposed time-domain algorithm is to calculate PC(n, ti) at each time and space sample,
and reject from the imaging domain all samples associated to phase coherence values
under a given threshold (as schematized in Figure 2).

t0
t1
t2

tK-2

tK-1

t0

ti

tK-1

ti+1

PC

Figure 2: Effect of the PC threshold on the number of pixels considered in the imaging
algorithm.

The pixel rejection threshold can take into account many parameters such as the
computational power available and a priori information about the source (position,
dimensions, frequency content, etc.). Following the rejection step, G is computed using
this new imaging domain and P is clipped accordingly (i.e. only the advanced time
measurements associated to the kept pixels are used). The resulting system can be solved
using various regularization approaches, but the standard Tikhonov regularization is used
herein in order to lower the sensitivity of the solution to noise. Using the well-known
solution to the Tikhonov regularization, the acceleration of the pixels of interest can be
calculated from:

Aλ =
2π
ρ0Ae

GλP (7)

where Gλ = (GHG + λI)−1GH, the underline symbol represents the quantity associated to
the reduced domain, (·)H is the conjugate transpose operator and λ is the regularization
parameter. For the configurations considered in the present work, the Generalized Cross
Validation (GCV) provided slightly better result than the L-curve for the regularization
parameter identification and was thus chosen. Hence, the λ value used in Equation 7 is



given by the minimization of [13] :

F(λ) =
|| GAλ − P ||2

[Tr(I −GHG−1
λ

)]−2
(8)

where Tr(.) represents the trace of a matrix. In the present work, the regularization
parameter identification and the resolution of Equation 7 is conducted using the
Regularization Tools MATLAB toolbox [14].

3. ALGORITHM VALIDATION

In order to validate and demonstrate the performance of the Time-Domain Phase
Coherence algorithm (TD-PCa) described in Section 2, a baffled simply-supported panel
is numerically and experimentally considered. Indeed, referring to Figure 1, a regular
square microphone array (11 × 11 microphones) is located at height zm = 0.6 m above the
imaging domain into which lies the 3.2 mm thick panel of dimensions: 48 cm × 42 cm.
The microphones are separated by ∆x = ∆y = 0.1 m, resulting in a 1 m × 1 m array
with a spatial aliasing frequency of 1 715 Hz. As done in NAH, the imaging domain
lying at z0 = 0 has similar dimensions than the microphone array, although using a better
refined mesh compared with NAH. The imaging domain is discretized into a grid of
41 × 41 source monopoles for a total of 1 681 pixels, and 100 time samples at a sampling
frequency of 6 400 Hz are considered.

3.1. Numerical Validation

The simulation of the acceleration field of the impacted simply-supported panel is
conducted using the modal summation method. Indeed, the vibration response on the
whole panel due to a point force at position (x f , y f ) at a given frequencyω is given by [15]:

v(ω, x, y) =

∞∑
α=1

∞∑
β=1

uαβ(ω)φαβ(x, y), (9)

where uαβ(ω) and φαβ are the velocity amplitude and mode shape of mode (α, β)
respectively, and they are given by :

uαβ(ω) =
jωFφαβ(x f , y f )

[ω2
αβ(1 + jη) − ω2](ρshab/4)

, φαβ(x, y) = sin
(
απx

a

)
sin

(
βπy
b

)
. (10)

In Equation 10, F is the force amplitude, η is the damping loss factor, ρs is the
panel density, h is the thickness and a and b are the dimensions of the panel in the
x and y directions respectively. In order to find the acceleration field resulting from
a point like impact, the modal summation method is used to first construct v(ω, x, y)
frequency by frequency over a wide frequency range. Taking the inverse Fourier
transform of the resulting complex velocity field, one obtains the response of the
impacted simply supported panel. Following this, the acceleration field of the aluminium
panel is obtained with a simple discrete time derivative of the velocity field. The
propagation and measurement phases of the simulation are conducted using the time
domain acoustic k-Wave MATLAB toolbox [16]. Finally, a white noise is added to the
simulated sound pressure at each microphone, resulting in a signal to noise ratio of 10 dB.



In order to discuss about the imaging results obtained using TD-PCa, the latter is
compared in Figure 3 with the output of the DAS and with the simulated acceleration
field (ground truth). In Figure 3, the columns represent three subsequent time samples
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Figure 3: (Top) Simulated acceleration field; (middle) reconstruction using the TD-PCa
and (bottom) output of the standard DAS algorithm.

(∆t = 1/6400 s) and the extent of the panel is represented by the dashed line. The first
major element to be noted is that the amplitude of the reconstructed acceleration is off

by more than a factor 10 when using the DAS since it is based on the unique radiator
element hypothesis. On the other hand, TD-PCa is presented on the same color-scale than
the simulated acceleration field (ground truth). Indeed, the amplitude of the reconstructed
acceleration is pretty similar to the simulated acceleration field, although a little under-
determined. Moreover, one can observe that the artefacts in the DAS maps are not present
in the TD-PCa images. Indeed, the pixel rejection process has eliminated the majority of
the pixels outside the plate. Thus, TD-PCa results in less subjective images than DAS.
Also, one can note that the negative wavefront surrounding the impact position in time
frame t1 is recontructed using TD-PCa and that the interactions with the edges of the
plate are also reconstructed in time frames t2 and t3. From these results, it seems that the
TD-PCa can be used for transient vibration field reconstruction without using any a priori
information about the source. The following section presents the results obtained for the
experimental replicate of the same configuration.



3.2. Experimental Validation

As can be seen in Figure 4, two sets of measurements are conducted. First,
deflectometry measurements are performed using a Fastcam Mini AX200 Photron high
speed camera (6 400 frames per second) in order to have an experimental acceleration
reference measurement [17]. Following this, the microphone array is mounted in front
of the panel and the same excitation is used. As a way to have a repeatable excitation,
the drop of a pendulum (consisting of a metallic sphere at the end of a nylon string)
is triggered using an electromagnet in order to create a point-like impact. The simply-
supported conditions of the panel are ensured using a dedicated procedure, as described
in [18].
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Figure 4: (left) Deflectometry measurement setup and (right) microphone array setup for
both measurements.

As for the numerical validation, the imaging results for the deflectometry (ground
truth), the TD-PCa acceleration reconstruction and the DAS output are presented in
Figure 5 for the three same snapshots as in Section 3.1 (namely: t1, t2 and t3).

Looking at Figure 5, one can see strong similarities with Figure 3. Indeed, the
deflectometry measurement for the three snapshots shows that the acceleration source is
very similar to the one considered in the simulation. Moreover, the TD-PCa and DAS
are practically identical to the results presented in Section 3.1, validating the use of
the modal summation method combined with k-Wave for the generation, propagation
and measurement of the simulated acoustic field. The main difference between the
experimental and numerical results lies in the amplitude of the reconstructed acceleration
using the TD-PCa. Indeed, it seems that the amplitude is better reconstructed in the
experimental case. This probably comes from the fact that the experimental signals
measured in anechoic conditions are less noisy than the Signal-to-Noise Ratio (SNR) of
10 dB considered in the simulation. Consequently, the PC maps, although not presented
here, are experimentally better resolved (spatially) than numerically. Indeed, this can
be seen in the number of pixels conserved in the imaging domain for the TD-PCa
reconstruction in Figures 3 and 5. The fact that less pixels are conserved experimentally
results in a better conditioned system and in a more representative solution using the
Tikhonov regularization.
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Figure 5: (Top) Deflectometry reconstruction of the normal acceleration; (middle)
reconstruction using the TD-PCa and (bottom) output of the standard DAS algorithm.

4. CONCLUSIONS

In this paper, a time-domain imaging algorithm is presented for the acceleration
reconstruction of extended transient noise sources. The TD-PCa is based on the
phase-coherence principle widely used in image processing and ultrasound imaging. The
presented algorithm is divided into two steps: first, using a PC metric, the pixels that
are less likely to contribute to the pressure field are rejected from the imaging domain,
and second, the Tikhonov regularization is used to solve the inverse formulation of
the resulting linear system. An impacted simply-supported baffled panel is considered
numerically and experimentally to validate the approach. In both cases, the reconstruction
of the transient acceleration field using the TD-PCa is in good agreement with their
respective reference. Indeed, TD-PCa allows localizing the position of the impact,
imaging the flexural waves around it, capturing some interactions with the edges of the
panel and gives a good approximation of the normal acceleration field.
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