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ABSTRACT 

Axisymmetric ducts with variable cross-section are of importance in many acoustic 

problems ranging from horn theory to vocal tract acoustics. Webster’s equation is 

commonly used to describe their performance in the plane wave propagation 

regime. In some problems, mostly related to voice generation, one is interested in 

modifying the area of the duct cross-sections to adjust the frequency of a resonance. 

For instance, one may want to increase its value, or to bring a group of resonances 

closer together, to emulate effects that occur in natural voice production. To that 

goal, an optimization iterative process can be followed in which the cross sections 

are subsequently changed, according to an area sensitivity function, until the 

resonances of the duct are placed at the target position. Traditionally, the area 

sensitivity functions have been derived from the non-linear radiation pressure inside 

the duct. In this work we demonstrate there is no need to resort to such non-linear 

phenomenon because the same result can be deduced from a first order modal 

perturbation analysis of the duct eigenfrequencies. After proving that, we present 

some simulations in the framework of expressive vowel production. 
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1. INTRODUCTION 

Axisymmetric ducts with variable cross-sectional area are encountered in horn 

theory, musical instruments, large pipe installations or speech production. Determining 

how duct resonances change when modifying duct parameters such as the cross-sectional 

areas, the tube length or the wall damping, may serve several purposes in all those areas 

of acoustics. In voice production, for instance, the vocal tract can be approximated by an 

axisymmetric tube whose shape can evolve to produce expressivity effects when 

pronouncing a simple sound like a vowel (see e.g., [1,2]). The resonances of the vocal 

tract are usually referred to as formants in the speech community and the first two of them 
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allow one to distinguish one vowel from another. The dependence of the formant 

frequency locations on the vocal tract parameters has been therefore a classical topic of 

research since the pioneering work in [3].    

A first connection was established by Schroeder [4], who showed that formant 

variations were proportional to the radiation pressure (see e.g., [5]) at a vocal tract 

constriction. Since that work, the radiation pressure has remained as the main physical 

mechanism (circuit analogies aside) upon which sensitivity functions have been built and 

justified to move the vocal tract formants to targeted values, following an iterative 

optimization process for area and/or length perturbations [6,7]. However, the radiation 

pressure is essentially a non-linear phenomenon and one needs to resort to the second 

order wave equation to get non-null values for it.  

It is the main purpose of this work to show there is actually no need to resort to 

the non-linear pressure radiation to determine the area perturbation sensitivity functions 

for formant tuning. The same functions can be derived from a standard modal perturbation 

analysis (see e.g., [8,9]) of the discretized linear Webster equation, which describes planar 

wave propagation inside the duct (it is to be noted that similar results could be obtained 

for duct length perturbations, but they will be not reported herein). 

Despite of huge progress in numerical voice production, which allows one to 

simulate the generation of static sounds in complex three-dimensional (3D) vocal tracts 

using finite element FEM approaches (see e.g., [10-13]), the 3D generation of dynamic 

sounds as diphthongs is still challenging and requires substantial computational effort 

[14,15]. A 3D optimization process for formant tuning would therefore prove very costly, 

and one could think in converting the 3D optimization problem into a 1D one (relying on 

Webster’s equation), and, once solved, revert to 3D geometries. This work reports some 

initial, necessary results, towards that goal.  

 

2.  SENSITIVITY FUNCTIONS BASED ON RADIATION PRESSURE 

 

2.1 Ehrenfest’s theorem and the acoustic radiation pressure  

Let us consider the case of a rigid axisymmetric duct with centerline in the x  

direction, variable cross-sectional area ( )A x , and open boundary conditions at both ends. 

Assume that we can induce local changes ( )A x  to modify the duct resonances. As said 

in the Introduction, a typical situation would be that of an idealization of the human vocal 

tract, whose geometry can be distorted to move its formants and attain a certain 

expressivity effect when pronouncing a vowel sound.  

According to Schroeder [4], the Ehrenfest theorem allows one to relate the 

frequency perturbation nf  of a resonance nf , with the time averaged variation nE  of 

the modal mechanical energy, nE , when adiabatically changing the cross section from 

( )A x  to ( ) ( )A x A x , namely, 

 

δ𝑓𝑛

𝑓𝑛
=

δ𝐸̅𝑛

𝐸̅𝑛

. (1) 

 

Here and in what follows, an overbar designates a time averaged quantity. The 

increase/decrease of mechanical energy nE  in Equation 1 is associated to the work done 

by the radiation force on the duct walls. Recall that the Reynolds form of the momentum 

equation for an inviscid fluid reads  

 



 

 

𝜕𝑡(𝜌𝒖) + ∇ ∙ 𝑴 = 0, (2) 

 

where 𝜌 stands for the fluid density, 𝒖 for its velocity and 𝑴 for the momentum flux 

density tensor, 

 

𝑴 = (𝑝 − 𝑝0)𝑰 + 𝜌𝒖 ⊗ 𝒖, (3) 

  

with 𝑝 and 𝑝0 respectively being the total and constant ambient pressures.  For a stationary 

sound field, the time average of Equation 2 produces 

 

∇ ∙ 𝑴̅ = 0. (4) 

 

The divergence-free tensor 𝑴̅ is called the radiation stress tensor [5]. The mean excess 

pressure 𝑝 − 𝑝0̅̅ ̅̅ ̅̅ ̅̅  in 𝑴̅ will be herein identified with the acoustic radiation pressure (it 

should be noted that this term is often used to directly designate 𝑴̅, which is somewhat 

misleading). The radiation force exerted by a wave on an immersed object with 

surface Γ and normal vector 𝒏 is given by  

 

𝑭𝑅 = ∫ 𝑴̅
Γ

∙ 𝒏𝑑Γ. (5) 

 

 In the present situation, we consider plane wave propagation in the axis direction 

inside the duct, so the radiation stress tensor has entries   

  

𝑀̅𝑖𝑗(𝑥) = (𝑝(𝑥) − 𝑝0)𝛿𝑖𝑗 + 𝜌𝑢𝑖(𝑥)𝑢𝑗(𝑥), (6) 

  

with 𝑢𝑥 being the sole non-null velocity component. The radiation stress tensor in 

Equation 6 can be transformed to cylindrical coordinates to find the radiation force 

exerted on the duct walls, in the radial direction. The radial force at coordinate x inside 

the duct is simply given by    

 

𝐹𝑟
𝑅(𝑥) = 𝑝(𝑥) − 𝑝0

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝐴(𝑥). (7) 

 

As mentioned before, the variation of the modal mechanical energy nE  in Equation 1 

will equal the work performed by the radiation force when modifying the cross-section 

area from 𝐴(𝑥) to ( ) ( )A x A x , so that, 

 

𝛿𝐸̅𝑛 = −𝑊̅ = − ∫ 𝑝(𝑥) − 𝑝0
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝛿𝐴(𝑥)

𝐿

0

𝑑𝑥. (8) 

 

The radiation pressure 𝑝(𝑥) − 𝑝0
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ in Equation 8 vanishes for standard linear wave 

propagation. Therefore, the mean excess radiation pressure is essentially a non-linear 

phenomenon. Expanding all variables in series, i.e., 𝑝(𝑥) = 𝑝0 + 𝜖𝑝1(𝑥) + 𝜖2𝑝2(𝑥) +
⋯, 𝜌(𝑥) = 𝜌0 + 𝜖𝜌1(𝑥) + 𝜖2𝜌2(𝑥) + ⋯ and 𝒖(𝑥) = 𝜖𝒖1(𝑥) + 𝜖2𝒖2(𝑥) + ⋯ one can 

derive the acoustic wave equation to second order and check that the radiation pressure 

equals minus the first order time averaged Lagrangian density [5], 

 



 

 

𝑝(𝑥) − 𝑝0
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑝2(𝑥)̅̅ ̅̅ ̅̅ ̅ = −ℒ̅

𝑛(𝑥) = 𝑈̅𝑛(𝑥) − 𝐾̅𝑛(𝑥)

=
1

2𝜌0𝑐0
2 𝑝̅1

2(𝑥) −
1

2
𝜌0𝑢̅1

2(𝑥), 
(9) 

 

with 𝑈̅𝑛 and 𝐾̅𝑛 respectively denoting the time averaged potential and kinetic 

energies of the n-th mode at coordinate x, and 𝑝̅1 and 𝑢̅1 here standing for the time 

averaged first order acoustic pressure and acoustic particle velocity. Taking into 

account that the pointwise mechanical energy of the n-th resonance is given by 

( ) ( ) ( )n n nE x K x U x  , Equation 1 becomes, 

 

δ𝑓𝑛

𝑓𝑛
= −

∫ [𝑈̅𝑛(𝑥) − 𝐾̅𝑛(𝑥)] 𝛿𝐴(𝑥)
𝐿

0
𝑑𝑥

∫ [𝑈̅𝑛(𝑥) + 𝐾̅𝑛(𝑥)] 𝐴(𝑥)
𝐿

0
𝑑𝑥

=
∫ ℒ̅

𝑛(𝑥) 𝛿𝐴(𝑥)
𝐿

0
𝑑𝑥

𝐸̅𝑛

, (10) 

 

where 𝐸̅𝑛 is the total acoustic mechanical energy in the duct.  

 

2.2 Area sensitivity functions and iterative optimization process  

As noticed by Story [6], Equation 10 can be exploited to derive an iterative 

process to move a given resonance nf  to a target value 
tg

nf  through subsequent area 

perturbations.  From Equations 9 and 10 we can introduce the sensitivity function nS  

[6,7],  

  

𝑆𝑛(𝑥) =
ℒ̅

𝑛(𝑥)𝐴(𝑥)

𝐸̅𝑛

, (11) 

 

and rewrite Equation 10 as 

 

δ𝑓𝑛

𝑓𝑛
= ∫ 𝑆𝑛(𝑥)

𝛿𝐴(𝑥)

𝐴(𝑥)
 

𝐿

0

𝑑𝑥. (12) 

 

If one discretizes the duct into a series of Ns concatenated cones or cylinders, 

Equation 12 becomes 

 

δ𝑓𝑛

𝑓𝑛
= ∑ 𝑆𝑛

𝑠
𝛿𝐴𝑠

𝐴𝑠

𝑁𝑠

𝑠=1

. (13) 

 

To move a set of Nr resonances to new target positions, Story [6] proposes 

the following iterative scheme to modify the cross-sectional areas and achieve the 

final goal, 

 

𝐴𝑘+1(𝑠) = 𝐴𝑘(𝑠) + ∑ 𝑧𝑛𝑘
𝑆𝑛𝑘

(𝑠)

𝑁𝑟

𝑛=1

, (14) 

 

where 𝑠 = 1 ⋯ 𝑁𝑠 and 𝑘 = 0 ⋯ 𝑁iter, 𝑁iter being the number of iterations to be 

performed. The coefficients 𝑧𝑛𝑘
 are determined at each iteration by  

 



 

 

𝑧𝑛𝑘
= 𝛼

tg

nf − 𝑓𝑛𝑘

𝑓𝑛𝑘

, (15) 

   

𝛼 being a speed up factor, typically set to 𝛼 = 10.  The iterations continue until  

√∑ ( tg

nf − 𝑓𝑛𝑘
)

2

≤ 𝜀, with 𝜀 being a predetermined tolerance value. 

 

 The key of the above iteration procedure relies on the sensitivity function of 

Equation 11, which has been deduced from the non-linear acoustic radiation pressure in 

Equation 9. Traditionally, this has been the way to justify the effects of cross-sectional 

area changes on the frequency locations of resonances. However, it shall be proved in 

subsequent sections that the same sensitivity functions can be deduced without the need 

for second order non-linearity. A first order, standard modal perturbation analysis of the 

duct resonances suffices to that purpose.     

 

3.  SENSITIVITY FUNCTIONS FROM MODAL PERTURBATION ANALYSIS  

 

3.1 Discrete solution to Webster’s eigenvalue problem 

The propagation of plane waves inside a duct with varying cross section ( )A x  and 

length L can be described by means of the Webster equation. The resonances in such a 

duct for open boundary conditions at both ends can be obtained from the solution to 

 
𝑑

𝑑𝑥
(𝐴

𝑑𝑝

𝑑𝑥
) + 𝐴𝑘0

2𝑝 = 0,

𝑝(0) = 𝑝(𝐿) = 0,
 (16) 

 

where  𝑘0 = 𝜔 𝑐0⁄  is the wavenumber,  𝜔 the angular frequency and 𝑝 now designates 

the linear acoustic pressure instead of 𝑝1, to lighten the forthcoming notation. Let us solve 

the eigenproblem of Equation 16 using a numerical method. Given that it is a one-

dimensional problem, a finite difference scheme would suffice, yet we will resort to the 

finite element method (FEM) to facilitate future connection with three-dimensional 

models as well as to benefit from the resulting energy balance relations.  

The weak formulation of Equation 16 reads 

  

∫ 𝐴(𝑥)
𝑑𝑞(𝑥)

𝑑𝑥

𝑑𝑝(𝑥)

𝑑𝑥

𝐿

0

𝑑𝑥 − 𝑘0
2 ∫ 𝐴(𝑥)𝑞(𝑥)𝑝(𝑥)

𝐿

0

𝑑𝑥 = 0, (17) 

 

with q standing for a test function that satisfies the homogeneous boundary conditions in 

Equation 16.  If we next discretize Equation 17 partitioning the duct length [0, 𝐿] into 

𝑁𝑒 finite elements Ω𝑎 = (𝑥𝑎, 𝑥𝑎+1), with 𝑥𝑎 standing for a node and 𝑎 = 0 ⋯ 𝑁, we can 

expand the test function and the acoustic pressure as 𝑞(𝑥) = ∑ 𝑁𝑎(𝑥)𝑄𝑎𝑁
𝑎=0  and 𝑝(𝑥) =

∑ 𝑁𝑏(𝑥)𝑃𝑏𝑁
𝑏=0 , where the 𝑁𝑎(𝑥) correspond to polynomial basis functions and  𝑄𝑎 and 

𝑃𝑏 designate nodal values (i.e.  𝑄𝑎 ≡ 𝑞(𝑥𝑎) and 𝑃𝑏 ≡ 𝑝(𝑥𝑏)). Substituting the 

expansions into Equation 17 provides the algebraic matrix system 

 

(−𝜔2𝑴 + 𝑲)𝑷 = 𝟎, (18) 

 



 

 

with 𝑷 representing the vector of unknown nodal pressures. The entries of the mass and 

stiffness matrices 𝑴 and 𝑲 are given by 

 

𝑀𝑎𝑏 =
1

𝜌0𝑐0
2 ∫ 𝐴(𝑥)𝑁𝑎(𝑥)𝑁𝑏(𝑥)

𝐿

0

𝑑𝑥, 

 𝐾𝑎𝑏 =
1

𝜌0
∫ 𝐴(𝑥)

𝑑𝑁𝑎(𝑥)

𝑑𝑥

𝑑𝑁𝑏(𝑥)

𝑑𝑥

𝐿

0

𝑑𝑥. 

(19) 

 

The eigenproblem in Equation 18 will be satisfied for real eigenvalues 

(resonances/formants) 𝜔𝑛 with corresponding eigenvectors 𝚿𝑛 such that   
 

(−𝜔𝑛
2𝑴 + 𝑲)𝚿𝑛 = 𝟎. (20) 

 

If we introduce the dynamic stiffness matrix 𝒁 ≡ −𝜔2𝑴 + 𝑲, Equation 20 can be more 

succinctly written as 

 

𝒁𝑛𝚿𝑛 = 𝟎. (21) 

 

3.2 Perturbation analysis of the resonances 

 Our next interest is to see how the resonances 𝜔𝑛 get modified under a pointwise 

area perturbation from ( )A x  to ( ) ( )A x A x . To that purpose let us first consider the 

variation under an arbitrary generic parameter, say  𝑔, and follow the classical approach 

in [9]. If we pre-multiply Equation 21 by 𝚿𝒏
⊺  to get 𝚿𝒏

⊺ 𝒁𝑛𝚿𝑛 = 0  and then differentiate 

with respect to 𝑔 we get  

 

𝜕𝑔𝚿𝒏
⊺ 𝒁𝑛𝚿𝑛 + 𝚿𝒏

⊺ 𝜕𝑔𝒁𝑛𝚿𝑛 + 𝚿𝒏
⊺ 𝒁𝑛𝜕𝑔𝚿𝑛 = 0. (22) 

 

Because of Equation 21 and its transposed, only the middle term in Equation 22 differs 

from zero. Besides, and from its definition, the explicit derivative of 𝒁𝑛 with respect to 

𝑔 is given by 

 

𝜕𝑔𝒁n = −2𝜔𝑛𝜕𝑔𝜔𝑛𝑴 − 𝜔𝑛
2𝜕𝑔𝑴 + 𝜕𝑔𝑲. (23) 

 

Substituting Equation 23 into Equation 22, considering that −2𝜔𝑛𝑴 = 𝜔𝑛
−1[𝒁𝑛 −

(𝜔𝑛
2𝑴 + 𝑲)]  and making use of Equation 21 again, we arrive at  

 

𝜕𝑔𝜔𝑛

𝜔𝑛
=

𝚿𝒏
⊺ (−𝜔𝑛

2𝜕𝑔𝑴 + 𝜕𝑔𝑲)𝚿𝑛

𝚿𝒏
⊺ (𝜔𝑛

2𝑴 + 𝑲)𝚿𝑛
, (24) 

 

which written in terms of perturbations 𝛿ℎ = 𝜕𝑔ℎ𝛿𝑔 (ℎ representing a generic function), 

yields, 

 

𝛿𝜔𝑛

𝜔𝑛
=

𝛿𝑓𝑛

𝑓𝑛
=

𝚿𝒏
⊺ (−𝜔𝑛

2𝛿𝑴 + 𝛿𝑲)𝚿𝑛

𝚿𝒏
⊺ (𝜔𝑛

2𝑴 + 𝑲)𝚿𝑛
. (25) 

 

Given that the kinetic energy of the n-th mode is 𝐾𝑛 = −(1 2⁄ )i𝜔𝑛
−1𝚿𝒏

⊺ 𝑲i𝜔𝑛
−1𝚿𝑛 and the 

potential one 𝑈𝑛 = (1 2⁄ )𝚿𝒏
⊺ 𝑴𝚿𝑛, Equation 25 can be expressed as 

  



 

 

𝛿𝑓𝑛

𝑓𝑛
=

𝛿𝐾𝑛 − 𝛿𝑈𝑛

𝐸𝑛
=

𝛿ℒ𝑛

𝐸𝑛
. (26) 

 

Therefore, we have basically recovered the same result of Equation 10 (we have herein 

identified 𝛿ℒ𝑛 ≡ ∫ ℒ̅
𝑛(𝑥)𝛿𝐴(𝑥)

𝐿

0
𝑑𝑥 ) but without the need to resort to any non-linear 

phenomenon, such as the radiation pressure. Note that Equation 26 is a very general well-

known result that applies to any non-damped mass-stiffness matrix system [8,9]. 

     

3.2 Recovering the area sensitivity functions 

 From the above line of reasoning we can recover the area sensitivity functions in 

Section 2.2 as follows. The change of a matrix 𝑿 under a parameter perturbation can be 

approximated by a finite difference, so that 𝛿𝑿 = 𝑿(𝑔 + 𝛿𝑔) − 𝑿(𝑔). For area 

perturbations of the mass and stiffness matrices in Equation 19 we get  

 

𝛿𝑀𝑎𝑏 ≈ 𝑀𝑎𝑏(𝐴 + 𝛿𝐴) − 𝑀𝑎𝑏(𝐴) =
1

𝜌0𝑐0
2 ∫ 𝛿𝐴(𝑥)𝑁𝑎(𝑥)𝑁𝑏(𝑥)

𝐿

0

𝑑𝑥, 

 𝛿𝐾𝑎𝑏 ≈ 𝐾𝑎𝑏(𝐴 + 𝛿𝐴) − 𝐾𝑎𝑏(𝐴) =
1

𝜌0
∫ 𝛿𝐴(𝑥)

𝑑𝑁𝑎(𝑥)

𝑑𝑥

𝑑𝑁𝑏(𝑥)

𝑑𝑥

𝐿

0

𝑑𝑥. 

(27) 

  

If we divide the duct into 𝑁𝑠 elements of constant area 𝐴𝑠, we can expand the 

Lagrangian 𝛿ℒ𝑛 in the  numerator of Equation 26 as 

 
𝛿ℒ𝑛 = 𝛿𝐾𝑛 − 𝛿𝑈𝑛

= ∑
𝛿𝐴𝑠

𝐴𝑠

𝑁𝑠

𝑠=1

∑ ∑
1

2𝜔𝑛
2𝜌0

Ψ𝑛
a [∫ 𝐴𝑠(𝑥)

𝑑𝑁𝑎(𝑥)

𝑑𝑥

𝑑𝑁𝑏(𝑥)

𝑑𝑥

𝑥𝑠

𝑥𝑠−1

𝑑𝑥] Ψ𝑛
b

𝑁

𝑏=1

𝑁

𝑎=1

− ∑
𝛿𝐴𝑠

𝐴𝑠

𝑁𝑠

𝑠=1

∑ ∑
1

2𝜌0𝑐0
2

𝑁

𝑏=1

𝑁

𝑎=1

Ψ𝑛
a [∫ 𝐴𝑠(𝑥)𝑁𝑎(𝑥)𝑁𝑏(𝑥)

𝑥𝑠

𝑥𝑠−1

𝑑𝑥] Ψ𝑛
b

= ∑
𝛿𝐴𝑠

𝐴𝑠

(𝐾𝑛
𝑠 − 𝑈𝑛

𝑠)

𝑁𝑠

𝑠=1

= ∑
𝛿𝐴𝑠

𝐴𝑠
ℒ𝑛 

𝑠 ,

𝑁𝑠

𝑠=1

 (28) 

 

where 𝐾𝑛
𝑠, 𝑈𝑛

𝑠 and ℒ𝑛 
𝑠  respectively denote the kinetic energy, potential energy and 

Lagrangian of the s-th element when the n-th acoustic resonance is excited.    

 For an element s, the sensitivity function in Equation 11 becomes 

 

𝑆𝑛
𝑠 = ∫ 𝑆𝑛(𝑥)𝑑𝑥 =

𝑥𝑠

𝑥𝑠−1

∫
ℒ̅

𝑛(𝑥)𝐴(𝑥)

𝐸̅𝑛

𝑑𝑥
𝑥𝑠

𝑥𝑠−1

=
ℒ𝑛 

𝑠

𝐸̅𝑛

, (29) 

   

Finally, inserting Equation 28 into Equation 26 and taking into account Equation 29, we 

recover Equation 13 of section 2.2, which is at the basis of the iterative scheme to move 

the duct resonances by means of area perturbations. Namely, 

 

𝛿𝑓𝑛

𝑓𝑛
= ∑

ℒ𝑛 
𝑠

𝐸𝑛

𝛿𝐴𝑠

𝐴𝑠

𝑁𝑠

𝑠=1

= ∑ 𝑆𝑛
𝑠

𝛿𝐴𝑠

𝐴𝑠

𝑁𝑠

𝑠=1

. (30) 

 



 

 

If one makes a further simplification and considers a discretization of the duct into 

𝑠 = 1 ⋯ 𝑁𝑠 cylinders of areas 𝐴𝑠 and lengths 𝑙𝑠, such that the acoustic velocity 𝑢𝑠 and 

pressure 𝑝𝑠 inside them can be taken as constant, the kinetic and potential energies 

for the n-th mode in ℒ𝑛 
𝑠  (and consequently in 𝑆𝑛

𝑠) of Equation 30, can be easily 

computed as  

 

             𝐾𝑛
𝑠 =

1

2
𝜌0𝐴𝑠𝑙𝑠𝑢𝑠

2    and    𝑈𝑛
𝑠 =

1

2𝜌0𝑐0
2 𝐴𝑠𝑙𝑠𝑝𝑠

2  . (31) 

    

4.  SIMULATIONS 

As summarized in Section 2.2, an iterative process can be followed to move a set 

of resonant frequencies (formants) to target ones by modifying the area functions of the 

duct (e.g., a human vocal tract). As a starting point to demonstrate the method, we have 

used the Matlab implementation SensMap1 described by Story in [6] for speech synthesis. 

SensMap relies on a discretization of the vocal tract into 𝑁𝑠 concatenated tubes of 

constant cross-section 𝐴𝑠  and length 𝑙𝑠, so the simplifications for the potential and kinetic 

energies in Equation 31 apply to Equation 30. For the examples below, the velocities and 

acoustic pressures of the various 𝑁𝑠 tubes have been computed by means of an acoustic 

model based on the Transfer Matrix Method (TMM), similar to that of Sondhi and 

Schroeter [16]. However, we have replaced the matrix coefficients to resemble the 

boundary conditions one would encounter in 3D vocal tract acoustic simulations [17], 

given that our future goal will precisely consist in linking the current approach with 3D 

models.  

To illustrate the method, two simple examples will be addressed in which the 

formants of vowel [ɑ] are moved to new target frequency values. The area functions 

in [18] have been used to obtain the vocal tract shape of vowel [ɑ]. In all simulations, the 

speed of sound has been set to 𝑐0 = 350 m/s and the air density to 𝜌0 = 1.14 kg/m2. The 

vocal tract transfer function  

 

𝐻(𝑓) =
𝑃𝑜𝑢𝑡(𝑓)

𝑄𝑖𝑛(𝑓)
  (32) 

 

has been computed using the TMM to obtain the formant frequencies at each iteration. 

𝐻(𝑓) is computed as the ratio between the output acoustic pressure captured 3 cm from 

the mouth exit with respect to the input volume velocity at the vocal tract entrance 

(see [17]). 

In the first example, the frequency of the third formant (F3) is decreased while the 

other formant frequencies are kept constant. To do so, the formant frequencies of the 

original vocal tract 

 

𝑓 = [691, 1041, 3030, 4032, 4920] Hz (33) 

 

are moved to the target ones 

 

𝑓𝑡𝑔 = [691, 1041, 𝟐𝟖𝟎𝟎, 4032, 4920] Hz. (34) 

 

                                                      
1 SensMap is a Matlab code freely distributed by the Speech Acoustics and Physiology Lab of the University 

of Arizona at http://sal.arizona.edu/node/27 (last access 20th February, 2019) 

http://sal.arizona.edu/node/27


 

 

Figure 1 shows the area function and the vocal tract transfer function 𝐻(𝑓) for the 

original and modified vocal tracts. The achieved formant frequencies are shown in the 

top of the corresponding resonances in 𝐻(𝑓). As can be observed, the method succeeds 

in moving F3 from 3030 Hz to 2800 Hz. A total number of 117 iterations were needed to 

achieve an error of 𝜀 ≤ 1 Hz (see Section 2.2 for its definition). Note, however, that 

although we intended to only move F3, the iterative procedure also produces some small 

shifts in the other formants, such as F4, with a small variation of the order of 𝜀. 

 

  
(a) (b) 

Figure 1. (a) Vocal tract area function and (b) vocal tract transfer function 𝐻(𝑓) of 

vowel [ɑ] when the third formant is shifted down. 

 

The second example deals with a more interesting application in what concerns 

the generation of computational expressive voice. In this case the third (F3), fourth (F4) 

and fifth (F5) formants are moved to form what is known as a cluster of formants. This 

can be typically found when changing the voice from a speaking style to a singing one. 

For this configuration, the target formant frequencies are selected to be 

 

𝑓𝑡𝑔 = [691 1041 𝟐𝟖𝟎𝟎 𝟑𝟐𝟓𝟎 𝟑𝟕𝟎𝟎] Hz. (35) 

 

The target values of F3, F4 and F5 in Equation 35 were taken from an example in 

[6], but preserving the first and second formants obtained for the current vocal tract 

configuration. For this example, a total of 305 iterations were ran to obtain a solution with 

an error smaller than 1 Hz, as in the preceding case. Figure 2 shows the corresponding 

area functions and vocal tract transfer functions, for the original and modified vocal tract. 

Observe that the first and second formants remain unaltered, whereas F3, F4 and F5 join 

together, almost reaching the desired target frequencies. 

 

  
(a) (b) 

Figure 2. (a) Vocal tract area function and (b) vocal tract transfer function 𝐻(𝑓) of 

vowel [ɑ] when the third, fourth and fifth formants are moved to form a cluster.  



 

 

5. CONCLUSIONS 

 In this work, we have proved there is no need of resorting to the non-linear 

radiation pressure, to derive the area sensitivity functions for resonance tuning in ducts 

with varying cross-section. The propagation of sound waves inside such ducts is governed 

by the Webster equation. Applying a standard modal perturbation analysis to a finite 

element discretization of that equation allows one to recover the area sensitivity functions, 

without needing any non-linear phenomenon.   

Two illustrative examples of the resonance iterative tuning procedure have been 

presented, in the context of speech synthesis. Those involved shifting a resonance 

(formant) to a particular target value and clustering a small set of resonances. 

 Ongoing work in the above framework of the discretized Webster equation 

contemplates the inclusion of damping in the duct walls, as well as deriving the sensitivity 

functions under length and wall admittance variations, using simple linear acoustics.  
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