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ABSTRACT 
The purpose of this paper is to investigate the influence of passive vibration absorber 
in pipeline system. Passive vibration absorber is installed on the piping system. It 
analyzes the natural vibration characteristics and forced vibration characteristics 
of the piping system. The theoretical innovation of this paper combines the transfer 
matrix method with the Lagrangian equation in order to analyze the vibration 
characteristic of piping system with passive vibration absorber. Based on the 
vibration mechanics, the vibration differential equation of a single pipe is 
established. Using the continuum transfer matrix method, the transfer matrix of 
space piping system sets up. Considering the kinetic energy and potential energy of 
the pipeline system, the Lagrange equation of the second kind was used to establish 
the vibration differential equations of the pipeline system with the passive vibration 
absorber. Then , the mode superposition method was used to solve the forced 
vibration response. This paper analyzed a L-shaped beam with passive vibration 
absorber. The correctness of the method was proved by comparing the theoretical 
calculation results with the finite element results. The continuum transfer matrix 
method with Lagrange equation of the second kind has high accuracy in calculating 
the vibration characteristics of piping system. 
 
Keywords: Pipeline system, Passive vibration absorber, Continuum transfer matrix 
I-INCE Classification of Subject Number: 45 

 
1. INTRODUCTION 

Pipeline systems have been widely applied to areas such as designing heat 
exchange tubes in steam pipes, chemical plants, pump discharge lines, oil pipelines 
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marine risers. As the piping systems work, undesirable noise and vibrations are produced. 
The vibration would lead to a piping system surge, deteriorate the work environment or 
even paralyze the pipe system and machines. Therefore, it is of great significance to 
control the vibration of pipeline systems and an extensive effort has been made in the 
analysis of the piping system vibrations[1-2].  

This paper simplifies the pipeline system to Euler-Bernoulli beam model, taking 
an L-shaped beam structure with the consideration of passive vibration absorber as an 
example for analysis.Warminski[3] formulated the third order partial differential nonlinear 
equations for an L-shaped beam structure with different flexibility in the two orthogonal 
directions, without taking into account rotary inertia effects. Ozonato[4] studied post-
buckled chaotic vibrations of an L-shaped beam structure considering only in-plane 
bending nonlinear motions. Using Lagrange formulation, Georgiades[5] derived the linear 
equations of motion for an L-shaped beam structure when considering the rotary inertia 
terms. That study demonstrated well separated in-plane and out-of-plane motions, which 
has also been shown with Abaqus Finite Element simulations. In the analysis of vibration 
system, the passive vibration absorber is simplified to mass-spring system. Mass-spring 
system has been widely studied by researches. Related research to alter the natural 
frequencies and mode shape of beam, plate and shell structures using tuned mass damper 
and penalty function methods for various applications including optimal vibration control 
can be found in Refs[6-11].  

Different from the traditional discrete transfer matrix method, the continuum 
transfer matrix method is used in this paper. And Lagrange equation of the second kind 
is introduced to consider the impact of passive vibration absorber, the vibration of 
pipeline system is divided into in-plane vibration and out-of-plane vibration, their free 
vibration characteristics and forced vibration characteristics are separately analyzed. This 
method can calculate pipeline system with arbitrary angles and arbitrary constraint 
conditions, which has the advantages of easy programming and high calculation accuracy. 
The method can provide theoretical support for the application of passive vibration 
absorber on pipeline system and theoretical reference for parameter determination of 
vibration absorber. 

 
2.  PIPELINE DYNAMICS EQUATION 
 
2.1 Vibration Transfer Matrix of Pipeline 

Transverse vibration transfer matrix of straight pipe: 
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E is elastic modulus; I is  moment of inertia; ρ is density;A is cross-sectional area; 
ω is the natural  frequency. 

Longitudinal transfer matrix of straight pipe： 
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Torsion transfer matrix of straight pipe： 
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where 

G
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G is shear elastic modulus，Iρ is polar moment of inertia. 
When considering the axial movement, lateral movement in x-z plane, lateral 

movement in x-y plane and torsional movement of straight pipe simultaneously, the state 
variables of the straight pipe are as follows: 
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The overall pipeline transfer matrix [H] is obtained: 
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The structure composed of the two beams is connected by the displacement 
coordination condition and the force balance condition, thereby obtaining the transfer 
matrix of the system. By substituting a specific boundary, the natural frequency and mode 
shape function of the system can be obtained. 
 
2.2 Vibration Analysis of L-shaped Pipeline with Passive Vibration Absorber 

Placing the passive vibration absorber in the direction of out-of-plane vibration of 
L-shaped pipeline. The analysis model is shown as follows: 



 

Fig. 1  Out-of-plane vibration analysis model of L-shaped pipe 

 Assume that the out-of-plane transverse vibration mode function of pipe 1L is

( )x , the torsional vibration mode function is ( )x . The out-of-plane transverse vibration 

mode function of pipe 2L is ( )y , the torsional vibration mode function is ( )y , the kinetic 

energy and potential energy of the system are obtained: 
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Substituting Equation(13) and Equation(14) into the Lagrange equation of the 
second kind, the out-of-plane free vibration equations of the pipeline system are obtained: 
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Which can expressed in matrix form: 
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Solving the determinant of [BB], the natural frequencies of out-of-plane vibration 
of pipeline system can be obtained. 
 
3.  ANALYSIS OF EXAMPLE 

The left end of pipe L1 is the origin of coordinates. The free vibration 
characteristics and forced vibration characteristics of the model are analyzed. Parameters 
involved in the illustration are listed in Table 1. 

Table 1  Geometrical and material properties of T-shaped pipe 

The length of pipe 
 L1=10m 

L2=8m 
Inner diameter  d=0.035m 

Outer diameter D=0.040m 

Elastic modulus E=2.1*10^11 Pa 

Mass density ρ=7850 kg m-3 

Poisson’s ratio μ=0.3 

 
3.1 Free Vibration Characteristics of In-plane Vibration 

 The model is shown in Figure.1. Change the mass, stiffness and setting position 
of the passive vibration absorber, solve the natural frequencies of pipeline system and 
compare the theoretical calculation results with finite element calculation results. Take 
the first three natural frequencies for analysis, as shown in the following table: 

Table 2  Calculation of out-plane vibration natural frequency 

The situation of 
passive vibration 

absorber 

Finite Element 
Method 

(Hz) 

Proposed method 
(Hz) 

Relative error (%) 
(Based on FEM) 

No passive vibration 
absorber 

0.5672 0.5676 0.0688 
2.0483 2.0499 0.0781 
3.4278 3.4308 0.0875 

m=1.5kg 
k=3∙10^8N·m-1 

Acting position(3,0) 

0.5661 0.5666 0.0866 

2.0005 2.0029 0.1220 

3.3892 3.3944 0.1520 

m=2.5kg 
k=3∙10^8N·m-1 

Acting position(3,0) 

0.5654 0.5660 0.1044 
1.9694 1.9731 0.1899 
3.3650 3.3736 0.2544 

m=1.5kg 
k=3∙10^7N·m-1 

Acting position(3,0) 

0.5661 0.5665 0.0636 
2.0010 2.0030 0.1230 
3.3892 3.3943 0.1505 

m=1.5kg 
k=3∙10^8N·m-1 

Acting position(5,0) 

0.5611 0.5616 0.0820 
1.9437 1.9297 0.7208 
3.3951 3.3984 0.0957 

 
From the calculation results in Table 2, it can be seen that the calculation error of 

this method is very small. Changing the mass and position of the passive vibration 
absorber can change the natural frequency of the system. Changing the stiffness of the 
passive vibration absorber from ^ 13 10 8N m to ^ 13 10 7 N m has almost no effect on the 
natural frequency of the piping system. The out-of-plane vibration characteristics is 
similar to in-plane vibration and the natural frequency of out-of-plane vibration is much 
smaller than in-plane vibration. 
 



3.2 Forced Vibration Characteristics of Out-of-plane Vibration 
To solve the out-of-plane forced vibration response of the L-shaped pipeline 

system, an out-of-plane exciting force is applied, the amplitude of the exciting force is 
200N and the frequency of the exciting force is 15Hz. The position of the force and 
response position are changed. According to the parameters of this example, using the 
modal truncation method, the first ten modes are intercepted and the results are compared 
with the finite element calculation results. The calculation results are shown in the 
following table: 

Table 3  Calculation of out-of-plane forced vibration response 
Parameters and 

acting position of 
passive vibration 

absorber 

The acting 
position of 

force 
(m) 

The response 
position 

(m) 

Proposed 
method 
(mm) 

FEM 
(mm) 

Relative 
error (%) 
(Based on 

FEM) 

m=1.5kg 
k=3∙10^8N·m-1 
Acting position 

(3,0)  

 

(5,0) 
(2,0) 4.2447 4.2494 0.1117 

(5,0) -7.3390 -7.0510 4.0844 
(10,4) 1.7292 1.7578 1.6234 

(8,0) 
(2,0) -5.3032 -5.1412 3.1510 
(5,0) 5.0190 4.9937 0.5052 

(10,4) -1.2332 -1.2353 0.1643 

(10,4) 
(2,0) -1.7921 -1.7746 0.9890 
(5,0) 1.7292 1.7578 1.6236 

(10,6) -5.5270 -5.5868 1.0704 

 
It can be seen from Table 3, the results calculated using the continuous transfer 

matrix method are very close to those calculated by ANSYS, the relative errors are within 
5%. The out-of-plane vibration calculation results prove the accuracy of this method. 

When the position of exciting force is (5,0) and the position of passive vibration 
absorber is (3,0), the out-of-plane vibration response of each point in pipeline system are 
solved and compare the results with the finite element calculation results, as shown in 
Figure 2 and Figure 3: 

 

Figure 2  Comparison of vibration response results of out-of-plane vibration of pipeline L1 
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Figure 3 Comparison of vibration response results of out-of-plane vibration of pipeline L2 

It can be seen that the results of the continuous transfer matrix method and the 
finite element method are very close when calculating each position in the pipeline system, 
the theoretical method has a high accuracy when calculating out-of-plane vibration. 

In out-of-plane vibration, the effects of torsional vibration cannot be ignored. 
When the torsional vibration is ignored in analysis, the calculation results will have large 
errors, which is consistent with the conclusion of Ref [5] . 
 
4.  CONCLUSIONS 
 In this paper, taking the L-shaped pipe with passive vibration absorber as an 
example, the continuous matrix transfer matrix method with Lagrange equation of the 
second kind is introduced to analyze the free vibration characteristics and forced vibration 
characteristics of pipeline system. The passive vibration absorber is simplified as a mass-
spring unit. The natural frequency and vibration response under harmonic exciting force 
are obtained. The conclusions are obtained: 
 ①. Using the continuous transfer matrix method with Lagrange equation of the 
second kind for free vibration analysis of L-shaped pipe with passive vibration absorber, 
the error between the theoretical method and FEM is very small, which proves the method 
has high accuracy when calculate the free vibration characteristics of pipeline system. 
 ②. When the forced vibration analysis is performed, the position of the exciting 
force and response point are changed, multiple sets of calculations are performed. The 
comparison with FEM results shows that the results are in good agreement. The position 
of the force and the parameters of the passive vibration absorber remain unchanged, the 
forced vibration response of the entire pipeline is solved. Compared with the results of 
FEM, it is proved that the continuum transfer matrix method with the Lagrange equation 
of the second kind has high accuracy.  
 ③. The continuum transfer matrix method with Lagrange equation of the second 
kind can calculate arbitrary boundary conditions and arbitrary angles of the pipeline 
system, it has the advantages of accurate calculation results, convenient programming and 
fast calculation speed, which can provide theoretical support for the application of passive 
vibration absorber. The method can provide theoretical reference for the parameter design 
of the passive vibration absorber and the design of the distribution position of the passive 
vibration absorber. 
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