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ABSTRACT 
A structural optimization method of subsystems to realize desired SEA parameters 
was proposed by the authors in the past studies. This method is based on a 
combination of SEA and FEM calculation, calculating repeatedly until satisfying the 
value of objective functions under arbitrary constraints. As a result of applying the 
proposed method to a simple structure consisting of two flat plates connected in an 
L shaped configuration, the design variable is taken as the thickness of the FEM 
element, a subsystem structure with the desired value of the CLF or power flow 
between subsystems for the one frequency band or multi frequency bands were 
constructed. However, it is difficult to apply the optimal results to real machine 
structure because of setting the thickness of the FEM element as the design variable. 
In this paper, the method is also validated through numerical analyses, using a finite 
element method, of a flat plate and an L shaped plate, the subsystem is grouped into 
a plural elements, and the each grouped element is set as a design variable, which 
should take a discrete value, the total mass is taken as a constraint function in order 
to minimize the subsystem energy or CLF12 at one frequency band under each 
condition to realize utilization of this optimization method. 
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1. INTRODUCTION 

Automotive industry requires for improving the fuel consumption is lighting the 
weight of car. Accordingly, vibro-acoustic analysis to the high frequency is desired by 
using high stiffness thin plate which is thinner than conventional one. When 

implementing the structural optimization considered the energy flow or power flow 

between structural subsystems for attempting to reduce structure-borne sound radiated 
from machinery, it is difficult to examine how the energy flow changes structural 
subsystems with conventional structural optimization methods. The conventional method 

using the peak value of FRF is not easy to set the objective function because of 

considering the peak of the magnitude in the discrete frequency for the case of existing 

the plural natural frequencies in the target frequency.  
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Conversely, statistical energy analysis (SEA) is a method for vibro-acoustic 
analysis which regards the system as composed of high modal density and focuses on the 
power equilibrium between the subsystems [1]. In SEA, the coupling loss factor (CLF) 
denotes the energy flow between the subsystems, and power flow (PF) denotes the power 
flow between the subsystems during machine operation. 

Therefore, it is considered that setting the CLF or PF to the objective function is 
easy to realize the structural optimization which considers the energy flow or power flow 
between the subsystems. In addition, the subsystem is averaged over space and frequency, 
so it is possible to become the uniformly thickness distribution of subsystem structure and 
decrease the number of objective function compared with the conventional method. 

Accordingly, the authors developed a formulation of a structural optimization 
method for SEA subsystems for which the realization of the desired value of the loss 
factors is necessary [2]. This method is based on a combination of SEA and FEM 
calculation, calculating repeatedly until satisfying the value of objective functions under 
arbitrary constraints. As a result of applying the proposed method to an L shaped 
configuration, the design variable is taken as the thickness of the FEM element, a 
subsystem structure with the desired value of the CLF [2] or power flow [3] between 
subsystems for the one or multi frequency bands were constructed. However, it is difficult 
to apply the optimal results to real machine structure because of setting the thickness of 
the FEM element as the design variable. 

So, in this paper, the aim is expanding the formulation of a structural optimization 
method for SEA subsystems to conduct them in which the design variable is grouped FE 
element, which should take a discrete value (in the form of either a damping rubber or 
original thickness) and adopt large-mass method instead of rain-on-the roof excitation. 
As test structures, a flat plate and an L-shaped plate are considered, where the total mass 
is taken as a constraint function in order to minimize the subsystem energy or CLF12 at 
one frequency band under each condition to realize utilization of this optimization method. 

 
2.  BASIC THEORY OF SEA AND STRUCTURAL OPTIMIZATION METHOD 
 
2.1 SEA Power Balance Equation 

In SEA, a system is regarded as an assembly of subsystems. If the system has r 
subsystems, consideration of the power balance between them leads to a basic set of SEA 
equations [1]: 
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Here, ω is the center angular frequency of the band, E is a vector containing the 
subsystem energies, and P is the external input power vector. The loss factor matrix, L, 
comprises Internal Loss Factors (ILFs), ηi,i, and Coupling Loss Factors (CLFs), ηi,j. 
Estimation of the ILFs and CLFs is referred to as the construction of the SEA model. 
 



 

 

2.2 Structural Optimization Method  
The flowchart of the developed structural optimization method was shown in Fig. 

1. First, calculating the subsystem energies and input power of subsystem by applying 
large-mass method [4] instead of rain-on-the-roof-excitation [5] on the basis of initial 
value of the design variables for reducing analytical cost. The design variables are the 
density, Young's modulus, the damping values associated with the material properties, 
the thickness of the plate elements, the shape, and the coupling between the subsystems 
related to the structures, and so on. Second, calculating the SEA parameters on the basis 
of the power injection method [6] of the objective functions using the calculated 
subsystem energies and input powers. Finally, calculating the constraints functions by 
performing static analysis. The optimization algorithm defines new value for the design 
variables, and a new set of SEA parameter and constraints functions calculation are 
performed until satisfying the value of objective functions. 

For the case of calculating the subsystem energies and input powers, rain-on-the-
roof excitation was a method for satisfying the SEA assumptions that the excitation force 
applies to all frequency components uniformly and that all vibration modes were excited 
at the target frequency. In this study, we define rain-on-the-roof excitation by invoking a 
point force at each FEM node and then calculating and integrating the response of each 
plate to these forces over the plates. Large-mass method is a kind of displacement 
excitation methods, it calculates the vibration response over a frequency range including 
the magnitude and phase of the vibration response. In the large-mass method, the 
excitation point is treated as a rigid body and so the response at the excitation point is that 
for a rigid body. Therefore, it is difficult to identify the input power. Instead, the input 
power is evaluated [7] from 
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2
P m vωη= .                                                                (3) 

where m is the mass of the subsystem, η is the internal loss factor, and v2 is the 
mean-square velocity. The analytical cost of base excitation is lower than that for rain-
on-the-roof excitation because there is only one excitation per subsystem. 

 
2.3 Formulation of the Structural Optimization Problem by SEA 
 The formulation of the optimization problem by taking into account the subsystem 
structure is considered together with past structural optimization problems. The structure 
for which the objective function is maximized (minimized) or satisfies the target value is 
generated using a numerical method such as FEM. For example, the objective function is 

 

Figure 1: Flowchart of optimization procedure. 
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assumed to be CLF at an arbitrary frequency band and is used to formulate the 
minimization of the objective function. In the case of the minimization of the objective 
function CLFi ({ xj}) at multiple frequency bands (i=1,..., n) on the basis of the constraint 
function g({ xj}) in a feasible design region D, the following equations can be written by, 

{ }( )( )i j
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Minimize CLF x∑ .                                         (4a) 
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Here, gmax is the upper limit of the constraint function g({ xj}), and {xj} L ({ xj} U) is 
for lower limit (upper limit) on design variables {xj}. 
 
3.  APPLICATION TO THE SIMPLE STRUCTURE MODEL 
           

 In this section, the validity of the structural optimization method was verified 
through numerical FEM analyses of a simple two types of model, (i) simple flat plate 
consisting of one subsystem, and (ii) an L plate consisting of two subsystems. 
 
3.1 Test Structure for One Subsystem and Problem Settings 

Here, we applied the structural optimization method to a simple flat steel plate 
whose lateral dimensions were 0.6 m by 0.3 m and whose thickness was 1.6 mm. All the 
edges of the plate were free supported. In this work, the FEM software package ANSYS 
Ver. 16.1 for constructing the model together with ANSYS Parametric Design Language 
(APDL), the SEA parameters were calculated using MATLAB, and the optimization 
results were obtained using OPTIMUS 10.18, which is software for automation, 
integration, and optimization. An elastic shell element (shell 181) was used that consists 
of 4 nodes. The size of each element in the mesh is 0.02 m × 0.02 m, which was sufficient 
to contain six nodes per bending wavelength up to 1k Hz, the total numbers of nodes and 
elements are 648 and 450, respectively. The material properties of the plate were as 
follows: Young's modulus, E = 210G Pa, and Poisson's ratio, ν = 0.3. The objective 
function was subsystem energy which was calculated and integrated over the plate at the 
range of 25-1k Hz in 5 Hz steps, after that, the one-third octave frequency band 
characteristics were calculated in the range of 50-800 Hz. For the large-mass method, a 
mass equal to the plate’s mass multiplied by 106 was set through a rigid body with a length 
of 0.3 m below the node position (0.04 m, 0.04 m) of the plate from Fig. 4, and the edge 
of the rigid body was excited by a vibration acceleration of 9.8 m/s2. 

The subsystem was grouped into 18 elements, as shown in Fig. 4, and the each 
grouped element was set as a design variable, which should take a discrete value (in the 
form of either a plate with damping rubber (2mm) or original plate) except for the 
excitation area. Thus, there were 17 design variables. The material density of the modified 
plate with damping rubber was ρ = 9651 kg/m3, and the loss factors were assumed to be 
0.05 from the experimental test. The material density of the original one was ρ = 7542 
kg/m3, and the loss factors were assumed to be 0.001. The mass of  the original plate was 
2.17 kg. The total mass was taken as a constraint function. The upper limit for the design 
variable was 2.31 kg, that was the mass addition by rubber sticking was permitted to four 
area. The target objective function was the minimization of subsystem energy at 125 Hz 
in 1/3 octave band from Fig. 3. 

After the setup of the above mentioned, the optimization algorithms were set in 
the OPTIMUS software. The Self-Adaptive Evolution (SAE) method, which is a kind of 



 

 

global optimization method applicable to discrete problems, was chosen here. The 
population size was chosen to be 5 times the number of design variables. That is, 85 
values of the population size were generated in each iteration. Since the time required for 
obtaining the optimization results was rather long as compared to the local optimization 
method, the number of iterations was set to nine times in Section 3.1 and twenty times in 
Section 3.2. 
 
3.1.1 Analysis Results 

 The iteration history of the objective function subsystem energy is shown in 
Fig. 2. Here, only the minimum value is indicated in each iteration. Figure 3 shows 
the comparative values of the subsystem energy between the initial value and the 
optimization results at the 6th iteration, which reaches the minimum value from 9th 
iterations. From Fig. 2, the value of the subsystem energy at first iteration decreased 
by about 97.7% as compared with the initial value. From Fig. 3, the value of the 
subsystem energy at target frequency band decreased by about 98.7% and become 
3.03×1011 as compared with the initial value of 2.30×1013. The mass is 2.31 kg. The 
optimization results in this case indicate that the all the values of subsystem energy 

 

Figure 2: Iteration history for the objective function subsystem energy in the 125 Hz band. 

 

Figure 3: Comparison between the initial values and optimum values of the subsystem 
energy by large-mass method. 

 

Figure 4: Test-plate structure 1: points marked “▲” is rigid-body points for large-mass 
method and excitation location, and “■” are structure modified location. 
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over 100 Hz band except for 200 Hz band are smaller compared with the initial value. 
 
3.1.2 Comparison with Point Excitation Results and Discussions 
       In this section, the proposed method is validated through the comparison 
of the results obtained by the point excitation instead of the large-mass method. The 
difference of these two types of method is presence or absent of rigid body that 
attached to the system. In case of the point excitation, there is no rigid body in the 
target structure, and the designated node is excited by unit force. 
                 Figure 5 shows the comparative values of the subsystem energy between 
the initial value and the optimization results by point excitation. From Fig. 5, it is 
different from the trend in Fig. 3, the value of the subsystem energy at target 
frequency band decreased by about 98.6% and become 4.11×10-4 as compared with 
the initial value of 3.28×10-2. 

Table 1 shows a comparison between the initial and optimum values of 
the first tenth natural frequencies except for the rigid mode. The sixth, the seventh 
and the eighth natural frequencies influence on the target frequency 125 Hz band 
(from 112 Hz to 141 Hz) in the initial and optimum conditions in Table 1. 
Replacement was observed at the initial and optimum conditions in the 6th and the 
7th mode shapes.  

 

Figure 5: Comparison between the initial values and optimum values of the subsystem 
energy by point excitation. 

Table 1 Comparison between the initial and optimum values of the natural frequencies 
except for the rigid mode. Unit : Hz 

Order Initial Optimal 

1 24.2 23.2 

2 29.8 29.1 

3 65.5 64.1 

4 66.9 65.1 

5 98.1 95.2 

6 113.4 110.0 

7 115.7 112.1 

8 133.1 128.9 

9 159.9 155.2 

10 178.3 175.7 
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3.2 Test Structure for Two Subsystems and Problem Settings 

As shown in Fig.6, the target structure consisted of two rectangular steel 
plates coupled in an L-shaped configuration. The lengths of plates 1 and 2 were L1 

= 0.5 m and L2 = 0.3 m, respectively. Both plates had a width of L3 = 0.6 m and a 
thickness of 1.6 mm. All the plate edges were free supported. The locations of the 
excitation points are depicted as black squares in Fig. 6. The element type and size 
were the same as those stated in section 3.1 for one subsystem. The total numbers of 
nodes and elements were 1578 and 1202, respectively. For the large-mass method, 
the analytical conditions were the same as those for one subsystem. Excluding the 
junction, at each frequency, the displacement response of each plate is calculated 
and integrated over the plates. 

The subsystem was grouped into 48 elements, as shown in Fig. 9, and the 
each grouped element was set as a design variable except for the excitation area. 
Thus, there were 46 design variables. The mass of subsystem 1 and 2 were 3.60 kg 
and 2.17 kg. These masses were taken as a constraint function. The upper limit for 
the design variable were 3.86 kg and 2.31 kg, that were the mass addition by rubber 
sticking was permitted to seven and four area. The target objective function was the 
minimization of CLF12 at 500 Hz in 1/3 octave band from Fig. 8. Various optimum 
conditions were the same as in Section 3.1, and as a result, 230 values of the 

 

Figure 6: Test-plate structure 2: points marked “■” are rigid-body points for large-mass 
method. 

 

Figure 7: Iteration history for the objective function CLF12 in the 500 Hz band. 

 

Figure 8: Comparison between the initial values and optimum values of the CLF12. 
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population size were generated in each iteration. The equation for two subsystems 

is expressed as 
11 1 1
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where Ei
j  is the energy of subsystem i when subsystem j is excited by 

input power Pj. The input power Pj is calculated by Eq. (6). 
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where Re () is the imaginary part, Fj is impulsive power spectrum, and vj 
is a velocity response spectrum in the vicinity of the excitation location from Fig. 9. 

 
3.2.1 Analysis Results 

The iteration history of the objective function CLF12 is shown in Fig. 7. 

Here, only the minimum value is indicated in each iteration. Figure 8 shows the 

comparative values of the CLF12 between the initial value and the optimization 

results at the 17th iteration, which reaches the minimum value from 20th iterations. 

When the value of the CLF12 at 100 Hz, 250 Hz, 315Hz and 800 Hz are negative, 

points are not plotted in Fig. 8. From Fig. 7, the value of the CLF at first iteration 

decreased by about 94.6% as compared with the initial value. From Fig. 8, the value 

of the CLF12 at target frequency band decreased by about 98.2% and become 

3.84×10-4 as compared with the initial value of 2.16×10-2. The mass of subsystem 1 

 

Figure 9: Test-plate structure 2 in development view: points marked “▲” is rigid-body 
points for large-mass method and excitation location, and “■” are structure modified 

location. 

 

Figure 10: Comparison between the initial values and optimum values of the subsystem 
energy by point excitation. 
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and 2 were upper limit from Figure 9. 
 
3.2.2 Comparison with Point Excitation Results and Discussions 
       Figure 10 shows the comparative values of the CLF12 between the initial 
value and the optimization results by point excitation. From Fig. 10, the value of the 
CLF12 at target frequency band decreased by about 97.4% and become 3.07×10-4 as 
compared with the initial value of 1.19×10-2. 
 
4.  CONCLUSIONS 
 In this study, a structural optimization method on the basis of the large-mass 
method for SEA subsystem was applying to realize the desired value of subsystem energy 
and CLF for the one one-third octave bands frequency. As a result of applying the 
developed method to simple structures, a flat plate and an L-shaped plate, a subsystem 
structure with the desired value of subsystem energy or CLF12 for the target frequency 
band was constructed. The effectiveness of the proposed method has been verified for the 
structure with the desired values of the subsystem energy and CLF under arbitrary 
constraints obtained by applying a combination of large-mass method and the 
optimization procedure. 
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