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ABSTRACT 

Polyurethane (PU) foams are widely used as noise and vibration damping 

materials in automobile applications. Their porous random microstructure is 

composed of a visco-elastic frame structure with an interstitial fluid filling the voids. 

Acoustic and mechanical energy absorption properties and their direct link with 

microstructure morphology are therefore of paramount importance in the design, 

prediction and optimisation of the material behaviour. Although some parameters 

can be directly measured, the complete acoustic characterisation of porous materials 

remains a real challenge. 

For that reason, an inverse calculation of acoustic parameters based on 

impedance tube measurement is proposed. Equivalent fluid models are used to study 

the wave propagation process within PU rigid foams, in which acoustic properties 

depend on the effective density and bulk modulus of the fluid. Conversely, Biot 

poroelastic model is used to study the multi-physical coupling between mechanical 

vibrations of the solid structure and acoustic waves in the fluid. Biot coupling is often 

present in the wave propagation through PU flexible foams, having a soft-like 

polymeric structure and semi-open microstructure. Finally, the macroscopic 

properties obtained by inverse numerical modelling are then linked to polymer 

characterisation obtained by Dynamical Mechanical Analysis and the material 

microstructure obtained with μCT. 
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1. INTRODUCTION 

Polyurethane (PU) foams represent an important and long-established class of 

polymeric materials for their mechanical, thermal, and acoustic properties. Lightweight 

PU foams are widely used as absorbing materials in various automotive applications (see 

Figure 1), because of their sound and mechanical energy dissipation properties, which 

allow an excellent Noise, Vibration and Harshness (NVH) comfort levels [1]. 

 
Figure 1. Properties’ matrix of lightweight PU foams for automotive applications. 

The high flexibility of PU chemistry, based on urethane reaction of isocyanate and 

polyol to form a structure-like polymer, allows to obtain PU foams, which can be either 

glassy or elastomeric at room temperature [2]. PU foams are characterised by a porous 

random microstructure, composed of a viscoelastic frame structure with air filling the 

voids. PU acoustic foams have often partially-open cells, in which cell faces are partially 

covered by thin membranes, which could influence the viscous-thermal dissipation as 

well as the elastic properties in foams [3]. The effect of cell face membranes has been 

recently analysed in [4, 5]. 

The energy transport within PU foams is carried through both the air-borne flow in the 

pores and the structure-borne vibration transmission. Several techniques have been 

developed to study the vibro-acoustic problems of porous materials. The first type, i.e. 

equivalent fluid models, considers the solid frame of the material to be rigid or limp such 

that a single longitudinal wave can propagate in the medium and therefore the acoustic 

properties depend on the effective density and the effective bulk modulus of the fluid. 

Such an assumption remains valid as long as the wave length is much larger than the 

pores’ characteristic dimension and the fluid is considered incompressible. For simplicity 

reasons, empirical models are still widely used, but only a few acoustic parameters can 

be directly derived from them [6]. For this reason, they are not used in this work. 

Conversely, phenomenological models consider the wave propagation inside the pores at 

a microscopic level. The viscous and thermal losses can be related at the macroscopic 

level to five geometrical parameters: the open porosity 𝜙, the static airflow resistivity σ0 , 
the tortuosity 𝛼∞ , the viscous Λ𝑣𝑖𝑠  and the thermal Λ𝑡ℎ𝑚  characteristic lengths. Although 

equivalent fluid models are widely used in the literature to model acoustic porous 

materials [7-9], they do not consider the vibrations of the foam’s microstructure and 

therefore they do not allow to study the coupled mechanical and acoustic wave 

propagation occurring e.g. in PU flexible foams. The second type, i.e. poroelastic models, 

which considers the solid phase as elastic characterised by a mass and a stiffness, and 

allows a shear and two compressional waves to propagate, can therefore be used to 

overcome equivalent fluid models’ limitations. The principal coupling theory is the Biot 

model [10, 11], which links the macroscopic fluid and solid displacement fields with the 

fluid effective parameters. 



The vibro-acoustic characterisation of PU foams is of fundamental importance to 

predict and compare the NVH comfort levels of different materials and eventually to 

improve the microstructural design by adjusting the chemical formulation. Some 

parameters, e.g. 𝜙, σ0 and the surface acoustic impedance 𝑍, can be directly measured 

without great difficulties, whereas others are usually more complex to measure without 

ultrasonic techniques [12]. For that reason, in this work, the inverse calculation of 

acoustic parameters based on impedance tube data has been employed. First, 

Attenborough, Wilson and Johnson–Champoux–Allard’s (JCA) equivalent fluid models 

for wave propagation in porous materials have been used to analyse the acoustic 

behaviour of a rigid absorbing PU foam. The motionless solid frame does not allow the 

usage of equivalent fluid techniques to study the vibro-acoustic behaviour of flexible PU 

foams, characterised by a soft-like microstructure. For that reason, the Biot poroelastic 

model has been applied in its one-Dimensional (1D) form to find the mechanical and 

acoustic parameters of a flexible absorbing PU foam, by considering the interaction of 

elastic frames and the fluid in pores.  

 

2.  MODELLING SOUND PROPAGATION IN POROUS MATERIAL 

This section presents an overview of the models for wave propagation in porous 

materials used in this paper. First, a brief explanation of equations governing equivalent 

fluid models is presented. Second, the expressions of the effective density 𝜌𝑒𝑞 and the 

effective bulk modulus 𝐾𝑒𝑞 obtained with Attenborough’s extended cylindrical pore 

models, Wilson and JCA’s phenomenological models, are introduced. Finally, the Biot 

poroelastic model is briefly presented.   

The phenomenological and poroelastic models assume the validity of the 

homogenization long-wavelength condition, i.e. 𝐿 ≫ 𝑙 being L and 𝑙 the macroscopic and 

the microscopic sizes of the Representative Volume Element (RVE), defined as the 

smallest volume of porous material representative of the whole [7].  

 

2.1 Equivalent Fluid Models 

Equivalent fluid models assume that the fluid within the pores does not excite the 

material structures; in other words, the skeleton can be assumed as motionless. This 

assumption is valid if the stiffness and/or the density of material structures are larger than 

that of the air and the wavelength is much larger than the characteristic dimension of the 

pores [13]. If these conditions are met, the propagation of the sound can be described by 

an equivalent fluid with a 𝜌𝑒𝑞(𝑤) and a 𝐾𝑒𝑞(𝑤), being 𝜔 the angular frequency. Such 

problem is governed by the Helmholtz equation: 

∇2𝑝𝑒𝑞 + 𝑘𝑒𝑞
2 𝑝𝑒𝑞 = 0 (1) 

where 𝑝𝑒𝑞 is the acoustic pressure and 𝑘𝑒𝑞 the frequency dependent wave number, defined 

as: 

𝑘𝑒𝑞 = 𝑤√
𝜌𝑒𝑞(𝑤)

𝐾𝑒𝑞(𝑤)
 (2) 

The specific characteristic acoustic impedance 𝑍𝑐 can then be calculated as: 

𝑍𝑐 =
√𝜌𝑒𝑞(𝑤)𝐾𝑒𝑞(𝑤)

𝜌0𝑐0
 (3) 

where 𝜌0 is the density of the air and 𝑐0 is the sound velocity in the air. Restricting the 

formulation to the case of an impedance tube where a foam sample, i.e. layer of equivalent 



fluid, is in contact on one side with the air, i.e. second layer of fluid, and, on the other 

side, is backed by a rigid wall, the specific acoustic impedance 𝑍 is given by [7]:  

𝑍 = −𝑖𝑍𝑐cot (𝑘𝑒𝑞(𝑤)𝑡) (4) 

where 𝑡 is the sample thickness, 𝑖 is the imaginary unit and cot is the cotangent function. 

𝑍 can be related to the sound absorption coefficient 𝛼 through the reflection coefficient 

𝑅, defined as the ratio of the pressures 𝑝′ and 𝑝 created by the outgoing and ingoing waves 

at the layer surface. 

𝑍 =
1 + 𝑅

1 − 𝑅
 (5) 

𝛼 = 1 − |𝑅|2 (6) 

 

2.1.1 Extended cylindrical pore models (Attenborough) 

Attenborough [14], extending Zwikker and Kosten’s [13] theory, described the wave 

propagation in porous materials including viscous and thermal effects, to consider the 

anisotropic nature of pores. He adapted the expressions of 𝜌𝑒𝑞(𝑤) and 𝐾𝑒𝑞(𝑤) to include 

the tortuosity 𝛼∞ and the shape factor 𝑏, assumed equal to 1 in this work, i.e. cylindrical 

pores. The adapted expressions are therefore given by: 

{
  
 

  
 𝜌𝑒𝑞(𝑤) =

𝜌0𝛼∞

1 −
2𝐽1(𝑠′√−𝑖)

𝑠′√−𝑖𝐽0(𝑠′√−𝑖)

𝐾𝑒𝑞(𝑤) =
𝑃0𝛾

1 +
(𝛾 − 1)2𝐽1(𝑠′√−𝑖𝑃𝑟)

𝑠′√−𝑖𝑃𝑟𝐽0(𝑠′√−𝑖𝑃𝑟)

 (7) 

where 𝑃0 is the ambient air pressure, 𝛾 is the ratio of specific heat capacity of the air, 𝑃𝑟 

is the Prandtl number, 𝐽0 and 𝐽1 are Bessel functions of the first kind of order 0 and 1 and 

𝑠′ is given by: 

𝑠′ = 𝑏√
8𝑤𝜌0𝛼∞
𝜎0𝜙

 (8) 

where 𝜙 is the open porosity and 𝜎0 the static airflow resistivity. 

Despite its simplicity, Attenborough’s model is not ideal for this study as it allows to 

determine only two material parameters, 𝜎0 and 𝛼∞. Moreover, the random 

microstructure of PU foams cannot be oversimplified by uniform cylindrical pores. 

 

2.1.2 Phenomenological models    

Phenomenological models consider the wave propagation problem on a microscopic 

level and wave propagation inside the pore networks is therefore included in the study. 

Readers can refer to [7] for a good overview of the main phenomenological methods and 

their formulation. 

Johnson-Champoux-Allard model (JCA)  

JCA model allows a better description of the wave propagation than Attenborough’s 

one, considering both the viscous and thermal effects in arbitrary-shaped pores [15]. JCA 

model accurately describes the wave propagation process mainly at medium and high 

frequency ranges. The expressions of 𝜌𝑒𝑞(𝑤) and 𝐾𝑒𝑞(𝑤) are given by: 



{
 
 
 

 
 
 

𝜌𝑒𝑞(𝑤) = 𝜌0𝛼∞(1 +
𝜎0𝜙

𝑖𝜌0𝑤𝛼∞
√1 +

4𝑖𝛼∞2 𝜂𝜌0𝑤

𝜎0
2Λ𝑣𝑖𝑠

2 𝜙2
)

𝐾𝑒𝑞(𝑤) =
𝑃0𝛾

𝛾 − (1 − 𝛾) (1 +
8𝜂

𝑖𝑤𝜌0Pr2Λ𝑡ℎ𝑚
2   

√1 +
𝑖𝑤𝜌0Pr2Λ𝑡ℎ𝑚

2

16𝜂 )⁄

 (9) 

where 𝜂 is the dynamic viscosity of the air, Λ𝑣𝑖𝑠 and Λ𝑡ℎ𝑚 are the viscous and thermal 

characteristic lengths of the material, respectively. More advanced formulations of JCA 

model, which consider more parameters, can be found in [16, 17]. 

Wilson model (Wilson)  

By characterizing viscous and thermal effects as relaxation processes, Wilson 

proposed a model aiming at the mid-frequency range behaviour of porous materials [18]; 

indeed, such model lacks the asymptotic behaviour in very low and high frequencies. The 

expressions of 𝜌𝑒𝑞(𝑤) and 𝐾𝑒𝑞(𝑤) are given by: 

{
 
 

 
 𝜌𝑒𝑞(𝑤) =

𝜌0𝛼∞
𝜙

√(1 + 𝑖𝑤𝜏𝑣𝑜𝑟)

√(1 + 𝑖𝑤𝜏𝑣𝑜𝑟) − 1

𝐾𝑒𝑞(𝑤) =
𝑃0𝛾

𝜙

√(1 + 𝑖𝑤𝜏𝑒𝑛𝑡)

√(1 + 𝑖𝑤𝜏𝑒𝑛𝑡) + 𝛾 − 1

 (10) 

where 𝜏𝑣𝑜𝑟 and 𝜏𝑒𝑛𝑡 are the vorticity- and entropy-mode relaxation times, respectively, 

given by: 

𝜏𝑣𝑜𝑟 =
2𝜌0𝛼∞
𝜙𝜂

𝜏𝑒𝑛𝑡 = 𝜏𝑣𝑜𝑟𝑃𝑟 (11) 

The vorticity-mode relaxation time is characterised by a velocity field with non-vanishing 

rotation, in which the pressure and the velocity are involved, while the entropy-mode 

relaxation time is characterised by the heat exchange to which the entropy, the 

temperature and the density are related. 

 

2.2 Poroelastic Model (Biot)   

Poroelastic models consider the solid phase as an elastic material, characterised by a 

Young’s modulus 𝐸, a Poisson ratio 𝜈 and a damping loss factor 𝜂𝑙; the mutual interaction 

between the solid frames and the fluid in pores is therefore analysed. Among poroelastic 

models, a central place is given to Biot theory [10, 11, 19]. Assuming no dispersion of 

the velocity in the elastic solid structures and wavelengths much larger than the 

dimensions of RVE, Biot developed a Lagrangian model to derive the stress-strain 

relations in solid (𝜎𝑖𝑗
𝑠 , 휀𝑖𝑗

𝑠 ) and fluid (𝜎𝑖𝑗
𝑓
, 휀𝑖𝑗
𝑓
) domains from a potential energy of 

deformation by considering the contribution of the frame Θ𝑠 and the air Θ𝑓 dilatations to 

the stress filed, according to: 

𝜎𝑖𝑗
𝑠 = [(𝑃 − 2𝑁)Θ𝑠 + 𝑄Θ𝑓]𝛿𝑖𝑗 + 2𝑁휀𝑖𝑗

𝑠

𝜎𝑖𝑗
𝑓
= (−𝜙𝑝)𝛿𝑖𝑗 = (𝑄Θ𝑠 + 𝑅Θ𝑓)𝛿𝑖𝑗

 (12) 

In Equation 12, 𝑁, 𝑃, Q and 𝑅 are elastic coefficients which, assuming an incompressible 

frame’ material, are given by: 



{
  
 

  
 𝑁 =

𝐸(1 + 𝑖𝜂𝑙)

2(1 + 𝜈)

𝑃 = 2𝑁
1 − 𝜈

1 − 2𝜈
+
𝑄2

𝑅
𝑄 = (1 − 𝜙)𝐾𝑒𝑞
𝑅 = 𝜙𝐾𝑒𝑞

 (13) 

𝐾𝑒𝑞 is the frequency-dependent effective bulk modulus of the fluid, given by Equations 

7, 9 or 10. JCA model, i.e. Equation 9, is used in this work. 

The two compressional waves and the shear wave can therefore be known, and the 

characteristic impedance related to the wave propagation can eventually be derived from 

the macroscopic displacements of the frame and the air. The computation of wave 

propagation in the 3D space using the Biot theory usually requires computer aided 

engineering tools. However, the study of this paper is limited to the sound wave 

propagation occurred during acoustic measurements in an impedance tube, and therefore 

the 1D analytical solution of the Biot theory can be used. Readers can refer to [7] for the 

complete formulation of the Biot theory. 

 

3.  MATERIALS 

In this work, a rigid sound absorbing foam (hereafter called Foam R) and a flexible 

sound absorbing foam (Foam F) are studied. The two materials are taken as 

representatives of the two main classes of industrial sound absorbing PU foams. 

Cylindrical samples of different thicknesses, i.e. 𝑡 = 2, 3, 4 cm, are considered to 

investigate the influence of the sample’s geometry on the acoustic absorbing performance 

and to further improve the parameters’ optimization using simultaneously datasets from 

samples of different thicknesses. Table 1 reports the geometrical and the material 

properties. 𝜎0 is directly measured by monitoring the pressure drop across the sample 

with respect to the volumetric flow rate [20]. 

  

Figure 2. Sound absorption coefficient 𝛼 of Foam R (left column) and Foam F (right column) 

cylindrical samples with 𝑡 = 2, 3, 4 cm, measured with an impedance tube. 

Figure 2 shows sound absorption coefficients 𝛼 of Foam R and F, measured using an 

impedance tube [21, 22]. The incoming and outcoming sound signals are detected by the 

two microphones over 100-4000 Hz frequency range. Increasing the foam thickness, the 

general absorbing performances of foams at low frequency range improve. The 𝛼-curves 

of foam F show a major slope change in the frequency range between 400-800 Hz, due to 

elastic micro-resonances of flexible structures.  



Figure 3 shows the mastercurves of the storage modulus for Foam R and F at 20 ℃, 

obtained from Dynamic Mechanical Analysis (DMA) data. All the measurements are 

performed with a Q800 testing machine by TA, applying a nominal sinusoidal strain of 

about 0.6 % with a frequency swept between 0.1 and 10 Hz, varying the temperature from 

−75 ℃ to 120 ℃. Details on the mastercurve calculation can be found in [23]. These 

DMA results show clearly the very different polymer stiffness of Foam R, i.e. stiff 

material, compared to that of Foam F, i.e. compliant material, in the small-strain 

viscoelastic regime. 

  

Figure 3. Mastercurves of Foam R and Foam F at 20℃, obtained from the DMA. 

Micro-CT (𝜇CT) scans with a Bruker Skyscan 1272 at a resolution of 5.4 𝜇𝑚 are 

performed for foam R and F. 3D reconstructions and image analyses are made using 

Bruker’s NRecon and CTAn software, while cell size analysis is made using in-house 

developed code. Image analysis involves creating fully connected skeleton structures of 

scanned data of foam samples. This is done by segmenting the data into air pores and 

solid structures. From these skeleton structures, it is possible to calculate the sizes of the 

air pores and the solid structures in the microstructures. The microstructure, coloured with 

cell size, and the pores size distributions of Foam R and F are shown in Figure 4; Foam 

F has a larger average cell diameter (546.7 𝜇𝑚) than that of Foam R (450.3 𝜇𝑚) and a 

more polydisperse microstructure.  

Table 1. Geometrical and material properties of Foam R and Foam F. 

 Foam R Foam F 

Thicknesses, 𝑡 [𝑚𝑚] 21.9, 32.1, 42.7 21.7, 30.4, 42.6 

Diameter [𝑚𝑚] 44.5 + [0.08] 44.6 + [0.10] 

Density, 𝜌 [k𝑔 𝑚3⁄ ] 21.6 + [0.37] 26.2 + [0.39] 

Porosity, 𝜙 [-] 98.1% + [0.03] 97.6% + [0.04] 

Flow resistivity, 𝜎0 [𝑘𝑁𝑠 𝑚4⁄ ] 68.6 + [12.7] 54.3 + [7.31] 

 

4.  ALGORITHM 

In Section 2, 𝑍 has been analytically related to both acoustic and elastic parameters 

through different models. Hence, a non-linear regression fit can be implemented to 

identify such parameters using the direct measurements of 𝑍 for Foam R and F. The cost 

function is therefore the residue between the experimental data 𝑍𝑒𝑥𝑝 and the one predicted 

by the different models. Parameters’ bonds are used to limit the searching domain; 𝛼∞ is 

constrained to be greater than 1, i.e. parallel streamlines of the velocity field, and lower 



than 10 [8]. Λ𝑣𝑖𝑠 must be smaller than Λ𝑡ℎ𝑚 as the former is defined as the interconnection 

between pores and the latter is linked to pore sizes [9]. 

  

Figure 4. Individual foam cell reconstruction, coloured with cell size (left column) and pore size 

distribution of Foam R and Foam F (right column). 

To increase the fitting accuracy, several authors [9] proposed a separate fitting of 

different areas of the 𝛼-curve, i.e. a low-frequency one where 𝛼 increases rapidly, a 

medium-frequency one where 𝛼 has a peak and a high-frequency one where 𝛼 tends to 

be stable. However, the main drawback of such approach is that to obtain different 

acoustic parameters for the same sample, losing their consistent physical meanings and 

connection to foam materials. In this context, curves obtained from samples of different 

thicknesses are fitted simultaneously to the entire analysed frequency range, in order to 

derive a unique and physically valid group of material parameters. 

 

5.  RESULTS AND DISCUSSION 

Figure 5 shows the comparison between measured values of 𝑍 and 𝛼, and predicted 

ones using the equivalent fluid inverse methods, based on Attenborough, JCA and Wilson 

models for the cylindrical sample of Foam R with 𝑡 = 2 cm. Table 2 reports the values of 

obtained acoustic parameters and the corresponding error, calculated as the mean squared 

error of 𝛼. The results of these three models are all satisfactory and the identified 

parameters are close to each other. Nevertheless, 𝜎0 is generally slightly overestimated 

compared with values measured; however, Wilson model gives the closest estimation, 

which is included in the measurements’ range. 

  
Figure 5. Foam R: comparison between measured and predicted values of 𝑍 (left column) and 𝛼 

(right column) for a cylindrical sample with 𝑡 = 2 cm. 



Table 2. Foam R: acoustic parameters calculated with inverse methods based on Attenborough, 

JCA and Wilson models for a cylindrical sample with 𝑡 = 2 cm. Wilson (𝑚𝑢𝑙𝑡𝑖𝑡) fitting 

algorithm employs simultaneously datasets of samples with 𝑡 = 2, 3, 4 cm.  

 𝜶∞ 𝚲𝒗𝒊𝒔[𝜇𝑚] 𝚲𝒕𝒉𝒎 [𝜇𝑚] 𝝈𝟎 [𝑘𝑁𝑠 𝑚4⁄ ] Error [%] 

Attenborough 3.8 -- -- 91.6 2.9 

JCA 3.4 54 196.7 92.1 3.1 

Wilson 2.9 42.6 201.1 80.9 3.5 

Wilson (𝑚𝑢𝑙𝑡𝑖𝑡) 3.4 38.4 233.9 94.7 4.8 

Although Attenborough model has the advantage to be simple to implement, it allows 

to calculate only 𝛼∞ and 𝜎0. Conversely, JCA model predicts a large number of acoustic 

parameters, describing with a high accuracy the wave propagation process mainly at 

medium and high frequency ranges. Its mean squared error at low frequency [0.1: 1] kHz 

(8.8 %) is much higher than that of Wilson (2.5 %). Indeed, the JCA asymptotic 

formulation does not require the imaginary part of dynamic permeability to exactly satisfy 

its frequency dependence for frequencies lower than the transition between viscous force-

dominated flow and inertial force-dominated flow [7].  

PU foams are characterised by a porous random microstructure, which contributes to 

produce anisotropic and/or spatially-dependent material properties. Moreover, the fitting 

parameters are very sensitive to the initial data and therefore to the sample measured. To 

obtain more reliable values of acoustic parameters, a fitting process employing 

simultaneously different datasets of samples with 𝑡 = 2, 3, 4 cm is implemented. In this 

case, Wilson model is used due to its simplicity and its low error over the entire frequency 

range. Figure 6 shows that parameters obtained using Wilson model employing different 

datasets can predict with a good accuracy (see Table 2) the α-curves for all samples 

analysed. An additional verification of the results’ accuracy can be implemented to link 

some macroscopic parameters to the analysis of the foam microstructure obtained with 

𝜇CT. Indeed, according to [7], 2𝛬𝑡ℎ𝑚 is representative of the material’s pore size. In this 

case, Wilson (𝑚𝑢𝑙𝑡𝑖𝑡), which uses different thickness datasets, gives the more 

representative values of acoustic parameters (2𝛬𝑡ℎ𝑚 = 466 𝜇𝑚 ≈ 450 𝜇𝑚). 

 
Figure 6. Foam R: comparison between measured and predicted values of 𝛼 obtained using 

Wilson model employing simultaneously different datasets of samples with t=2, 3, 4 cm. 

Equivalent fluid models can describe accurately the wave propagation within PU 

rigid absorbing materials, like Foam R, because the assumption of the motionless 

solid frame remains valid. However, several PU foams, like e.g. Foam F, are 

elastomeric at room temperature, characterised by an elastic frame. For such class 



of foams, equivalent fluid models cannot fully characterise the vibro-acoustic 

behaviour. Indeed, Figure 7 shows the poor prediction of Z and α (see blue curves), 

obtained with parameters fitted with Wilson model, especially around the resonances 

of the structures at low frequency range. 

  
Figure 7. Foam F: comparison between measured and predicted values of 𝑍 (left column) 

and 𝛼 (right column) of a sample with 𝑡 = 2 cm, obtained with Wilson equivalent fluid model 

and Biot poroelastic model. 

For that reason, the poroelastic inverse method based on Biot theory coupled with the 

JCA model is more appropriate to better characterise the wave propagation process within 

Foam F, see Figure 7 (green curves). Conforming to what was done for Foam R, Figure 

8 (left column) shows the comparison between measured and predicted values of 𝛼 

obtained with the Biot model employing simultaneously different datasets of samples 

with 𝑡 = 2, 3 𝑐𝑚. The acoustic parameters obtained are therefore more representative of 

the heterogeneity of Foam F (see Table 3). 

  
Figure 8. Foam F: comparison between measured and predicted values of 𝛼 obtained with Biot 

model employing simultaneously datasets of different samples with t=2, 3 cm, and fitting the 

data in [0.1; 4] kHz (left column) and [0.1; 1] kHz (right column) frequency ranges. 

Since the Biot theory can describe structures’ resonances, a closer look on [0.1: 1] kHz 

frequency range is taken by fitting the data in this range using Biot model for datasets of 

different thicknesses. Figure 8 demonstrates that the predicted curves fit well in such 

frequency range, obtaining at the same time reasonable values of acoustic parameters (see 

Table 3). Values of Young’s modulus are similar to those found in DMA results (see 

Figure 3), demonstrating the validity of the fitting algorithm to describe the poroelastic 

behaviour of Foam F. In this case, correlation between 𝛬𝑡ℎ𝑚 and the foam microstructure 

analysis obtained with 𝜇CT (see Figure 4) is less accurate than that of Foam R. This can 



be explained by the more polydisperse microstructure of Foam F, which gives a broader 

pore size distribution. Results are therefore more sample-dependent. 

Table 3. Foam F: acoustic parameters of a sample with 𝑡 = 2 cm, calculated using the Biot 

model, fitting the data in [0.1; 4] kHz (𝐁𝐢𝐨𝐭𝑎𝑙𝑙) and [0.1; 1] kHz (𝐁𝐢𝐨𝐭𝑙𝑜𝑤)  frequency ranges. 

Wilson (𝑚𝑢𝑙𝑡𝑖𝑡) algorithm employs simultaneously datasets of samples with 𝑡 = 2, 3 cm.  

 𝜶∞ 𝚲𝒗𝒊𝒔[𝜇𝑚] 𝚲𝒕𝒉𝒎 [𝜇𝑚] 𝐄 [kPa] 𝝂 𝜼 𝝈𝟎 [𝑘𝑁𝑠 𝑚4⁄ ] Error [%] 

𝐁𝐢𝐨𝐭𝑎𝑙𝑙(𝑡 = 2 𝑐𝑚) 2.1 17.8 175.3 71.2 0.44 0.44 116.6 3.1 

𝐁𝐢𝐨𝐭𝑙𝑜𝑤(𝑡 = 2𝑐𝑚) 3.8 25.7 233.6 204.5 0.32 0.31 69.6 8.7 

𝐁𝐢𝐨𝐭𝑎𝑙𝑙(𝑚𝑢𝑙𝑡𝑖𝑡) 3.7 68.8 97.3 104 0.28 0.43 115.6 3.4 

𝐁𝐢𝐨𝐭𝑙𝑜𝑤(𝑚𝑢𝑙𝑡𝑖𝑡) 3.8 39.3 203.1 194 0.28 0.24 75.5 2.9 

 

6.  CONCLUSIONS 

In this work, acoustic parameters of a flexible and a rigid sound absorbing foam were 

derived through an inverse calculation based on direct impedance tube measurements. 

Equivalent fluid models (Attenborough, JCA and Wilson), based on the assumption 

of a motionless solid frame, were compared to a poroelastic method based on the Biot 

theory coupled with the JCA model, which considered the interaction between the 

elastic frames and the fluid within pores, to characterise the acoustic behaviour of 

PU foams. Results have shown that former methods yielded accurate results for the 

rigid sound absorbing foam, whereas the latter method provided a unique group of 

acoustic parameters, which is able to describe the acoustic behaviour of the flexible 

sound absorbing foam, characterised by soft-like polymeric structures. 

To improve the models’ reliability and their ability to represent the random 

microstructure of PU foams, an inverse calculation that simultaneously fitted 

impedance tube results from samples with different thicknesses, was proposed. In 

addition, the entire frequency range was analysed simultaneously, to maintain a clear 

physical meaning of the acoustic parameters. This yielded a comparable accuracy 

level, i.e. mean squared error less than 5%, to that of those approaches fitting 

separately each area of 𝛼-curves. Moreover, a good correspondence was found 

between certain macroscopic properties obtained by the inverse calculations and the 

analysis of the material microstructure obtained with 𝜇CT. Indeed, algorithms using 

datasets of different thicknesses gave accurate values of acoustic parameters for the 

analysed PU foams. 
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