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ABSTRACT

This work deals with the dynamic behavior of periodic ribbed plates. The
governing equations of the effective mechanical behavior is derived through multi-
scale asymptotic homogenization method. The study focuses on situations of inner
resonance that correspond to specific mechanical contrasts between the beam and
plate parameters. The asymptotic homogenization process enables to upscale the
local dynamics at global scale, and yields a synthetic and analytic macroscopic
representation that encompasses the flexural and torsional mechanisms, as well
as the unconventional dispersion features associated with inner resonance. The
relevancy of homogenized models accounting for inner resonance is demonstrated
using numerical computations and experimental measurements. This approach
can be used to describe the motion of stiffened panels of industrial interest,
design structures having specific features in a given frequency range, such as
unconventional radiation efficiency and sound transmission loss.
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1. INTRODUCTION

This paper deals with the dynamic behavior of periodic ribbed plates with inner
resonance. Such structures are widely used in aeronautics where a planar structure can
be stiffened by a periodic layout of beams. The common ribbed plate model given by the
equivalent orthotropic plate with effective rigidities fails to describe the specific dynamic
features. In dynamics, a reference study on heterogeneous uni-directionally ribbed plates
has been conducted by [1] assuming that a pure flexural motion exists in the plate and a
coupled flexural/torsional motion exists is the stiffner. This approach leads to analytical
but implicit dispersion equations that must be solved numerically. The relevancy of these
equations was validated using WFEM (Wave Finite Element Method) [2]. However,
these do not provide analytical explicit expressions including the effect of local resonance
involved at both micro-and macro-scales, nor understanding of the dispersion curves.

The purpose of the present work is to derive asymptotic homogenized model for a
ribbed plate for which the unit cell comprises a beam clamped along a plate edge, as
illustrated in figure 1. Assuming that the size of the constitutive cell is short with respect
to the wavelength, the macroscopic behavior is determined by using an asymptotic
homogenization method [3–5]. The derived models are subsequently used to evaluate the
effective behavior of structures in which high geometrical and mechanical contrast can
occur and enhanced kinematics is observed [6–9]. Section 2 presents the homogenized
model, section 3 suggests a numerical validation based on WFEM computations, and
section 4 compares the proposed model with experimental measurements.

2. OVERVIEW OF THE 1D-RIBBED PLATE MODEL

This part summarizes the uni-directionally plate model presented in [9] and shortly
presents its results. Such a review introduces the key points to derive the ribbed
plate model based on the physical insight, briefly presents the guidelines for the
homogenization process, and sets out arguments for the coupling step. The final model
consists in a set of equations associated with the flexural (2.1), torsional (2.2), and guided
waves (2.3).

Figure 1: Periodic 1D-ribbed plate with constitutive cell Ω and coordinates associated
with the beam B and the plate P clamped on their interfaces Γ.

The asymptotic method is used to obtain the effective macroscopic governing
equations through the derivation of the beam and plate models. The model will be
derived in the scope of non-homogeneous kinematics since it is considered that the beam
imposes its displacement to the plate. This derivation considers first the case of a beam
with an unknown load on the junction. The plate model is then obtained and enables
to identify the in-plane and out-of-plane stresses that will be balanced by the unknown



stresses in the beam. The full coupling is achieved for bending and torsional behavior.

2.1. Homogenized formulation of the flexural behavior of ribbed plates

The purpose of the present example is to sum up the homogenized model for a
ribbed plate. Assuming that the size of the constitutive cell is short with respect to the
wavelength, the macroscopic behavior is determined by homogenization.

Asymptotic model of transversely loaded beam : the beam is considered to be
straight and homogeneous and the slenderness criterion is satisfied for εb = l/L << 1. Let
us introduce the macroscopic variable x1 along the axial direction and two microscopic
variables yα = ε−1

b xα, with α = 2, 3 along the section plane directions. The reference frame
associated with coordinates (x1, y2, y3) is (a1, a2, a3).Finally the a3-transverse vibrations of
B are described by the following equations :

∂x1T
B + F = −Λbω

2U(x1) with F =

∫
Γ+

b

σ23 −

∫
Γ−b

σ23

∂x1 MB + C − TB3 = 0 with C =

∫
Γ+

b

y3σ12 −

∫
Γ−b

y3σ12

MB = −EbIb∂
2
x1

U(x1)

(1)

The coupling with the plate consists in a shear force F associated with the stresses
σ23 and a couple C related to σ12.

Dynamic regime of the plate driven by the beam motion : the flatness criterion of
the plate is satisfied for εp = d/D << 1. In this case, two macroscopic variables xα with
α = 1, 2 and the microscopic variable y3 = ε−1

p x3, are used to describe the system.The
transverse displacement w of P is then governed by the classical Kirchhoff equation.

However, the condition of scale separation means that the wavelength along L is much
larger than that along D, then the displacement variation ∂x1w � ∂x2w. In the plate P,
the derivatives with respect to x1 are negligible compared to derivatives with respect to
x2. Consequently, the 2D plate equation reduces to a 1D equation Equation 2 involving
x2 only :∂x2T

P = −Λpω
2w; ∂x2 MP − TP = 0; MP = −E′pIp∂

2
x2

w in P
∀x1 : w(x1, x2 |Γ) = U(x1); ∂x2w(x1, x2 |Γ) = 0; on Γp

(2)

By continuity, the beam and the plate displacements are identical at their interfaces,
i.e., wΓ−p = UΓ+

b
, and, by periodicity, wΓ+

p = UΓ−b
. In addition, a clamped condition applies

on the plate extremities, i.e. ∂x2w(x1, x2 |Γp) = 0. It results that the set Equation 2 is a
linear problem where the displacement U(x1) is the forcing term. Thus, w(x1, x2) takes
the form w(x1, x2) = U(x1)φω(x2) where φω(x2) is the frequency dependent solution of
the classical one-dimensional harmonic bending equation here below in which appears
the natural flexural wavenumber δ4 = Λpω

2/(E′pIp). The resolution of Equation 2 is
straightforward and reads its solution :

φω(x2) =
cosh(δx2) sin(δ∗) + cos (δx2) sinh(δ∗)

cosh(δ∗) sin(δ∗) + cos(δ∗) sinh(δ∗)
; −D/2 < x2 < D/2; δ∗ =

δD
2

(3)



The expression of φω(x2) highlights the resonant nature of the plate response at the
specific frequencies corresponding to the odd modes of the plate. The anti-symmetric
modes of the clamped plate do not participate to the forced motion φω.

Beam/plate coupling : the coupling terms involved in the beam balance Equation 1
are given by the displacement field in the plate. The couple arising from σp12 vanishes
due to clamped condition Γp, then C = 0. Expressing the beam/plate stress continuity
at their interface and accounting for the periodicity we have σT12 |Γ∓b

= σp12 |Γ±p
= 0 and

σS 23 |Γ∓b
= σt23 |Γ±p . Then, using the plate equation Equation 2, the force exerted by the plate

on the beam (see Equation 1) reads

F = TP
|Γ−p
− TP

|Γ+
p

= −

∫ D/2

−D/2
∂x2T

Pdx2 = Λpω
2
∫ D/2

−D/2
Wdx2 = ΛpD〈φω〉ω2U(x1) (4)

The above results Equation 4 show that the plate exerts a shear force in the form of
a inertial term with a non-conventional frequency dependence arising from 〈φω〉. This
expression reported in Equation 1 provides the effective modeling of the ribbed plates
in bending Equation 5. This formulation encompasses the global modes associated with
the flexural inertia of the beam and a non conventional effective beam/plate inertia that
includes the frequency dependent effective mass of the plate in dynamic regime :

∂x1T
B + ω2ΛpD〈φω〉U(x1) = −ω2ΛbU(x1)

∂x1 MB − TB3 = 0 with 〈φω〉 =
1
D

∫ D/2

−D/2
φω(x2)dx2 =

2
δ∗

1
coth(δ∗) + cot(δ∗)

MB = −EbIb∂
2
x1

U(x1)

(5)

2.2. Homogenized formulation of the torsional behavior of ribbed plates :

The analysis in torsion is performed assuming that the beam B is loaded in torsion :∂x1M
B + T = −ω2ρbJbθ(x1) with T =

∫
Γb

y2σ32.n2 −

∫
Γb

y3σ22.n2

MB = GbIb∂x1θ(x1)
(6)

where the torqueT accounts for the action of the plate on the beam.The plateP in bending
is described by the set Equation 2. Assuming scale separation, the description reduces to
Equation 7 except for the boundary conditions. Here the proper boundary conditions
express that Γ−b and Γ+

b follows the same rotation θ(x1),thus, the plate problem reads now∂x2T
P = −Λpω

2w; ∂x2 MP − TP = 0; MP = −E′pIp∂
2
x2

W in P
∀x1 : w(x1, x2 |Γ) = 0; ∂x2w(x1, x2 |Γ) = θ(x1); on Γp

(7)

The solution of this linear problem in which rotation θ(x1) is the forcing term takes
the form W(x1, x2) = Dθ(x1)ψ(x2) where ψω(x2) is the frequency dependent solution of
∂4

x2
ψω − δ

4ψω = 0 with ψω(x2 |Γp) = 0 and ∂x2ψω(x2 |Γp) = 1/D. The resolution provides

ψω(x2) =
sinh(δx2) sin(δ∗) − sin (δx2) sinh(δ∗)

2δ∗(cosh(δ∗) sin(δ∗) − cos(δ∗) sinh(δ∗))
; −D/2 < x2 < D/2 (8)



The denominator of ψω(x2) vanishes for the eigenfrequencies of the anti-symmetric modes
of the plate. The beam/plate coupling through the torque T is derived from the stress
continuity and the periodicity that provides σ22 |Γ∓b

= σ22 |Γ±p and σ23 |Γ∓b
= σ23 |Γ±p . Then the

action of the plate on the beam in Equation 6 reads :

T =
b
2

(
TP
|Γ−p

+ TP
|Γ+

p

)
− MP

|Γ−p
+ MP

|Γ+
p

(9)

Now, from the plate equation 7 we have on the one hand

MP

|Γ+
p
− MP

|Γ−p
=

D
2

(TP
|Γ+

p
+ TP

|Γ−p
)| + ΛpD3〈

x2

D
ψω〉ω

2θ(x1) (10)

and on the other hand : TP
|Γ+

p
= TP

|Γ−p
= −E′pIp∂

3
x2
ψω | D2 Dθ(x1). Substituting the previous

expressions in Equation 6 provides the effective torsional modeling Equation 11,
Equation 12, Equation 13. This formulation includes the global modes associated with
the non conventional effective beam/plate rotational inertia, that contains i) the static
rotational inertia of the beam and the effective rotational inertia of the plate J∗ω - and ii) a
frequency dependent torsional spring rigidity C∗ω :

∂x1M
B + ω2ΛpD3J∗ωθ(x1) −

E′pIp(D + b)

D2 C∗ωθ(x1) = −ω2ρbJbθ(x1)

MB = GbIb∂x1θ(x1)

(11)

with

J∗ω = 〈
x2

D
ψω〉 =

1
D

∫ D/2

−D/2

x2

D
ψω(x2)dx2 =

1
(2δ∗)2

coth(δ∗) + cot(δ∗) − 2/δ∗

coth(δ∗) − cot(δ∗)
(12)

C∗ω = D3∂3
x2
ψω | D2 = (2δ∗)2 coth(δ∗) + cot(δ∗)

coth(δ∗) − cot(δ∗)
(13)

2.3. Guided modes

The kinematics described in previous sections 2.1 and 2.2 correspond to situations
where the plate is driven by the moving beams. However a second mechanism when the
beams are at rest (U(x1) = 0 in Equation 2 and θ(x1) = 0 in Equation 7) is associated
with guided waves. At the leading order, the plate reduces to the 1D problem (similar to
Equation 2 except for the zero boundary condition for ψ). Let us seek for an approximated
solution in the form of separated variables :

w(x1, x2) = exp(ik′ωx1)Ψ(x2) where Ψ(x2 |Γp) = 0 ; ∂x2Ψ(x2 |Γp) = 0

The function Ψ(x2) fluctuates according to the plate width D, while exp(ik′ωx1) varies
according to L � D. Consequently, at the leading order, the plate equation reduces to the
following 1D-problem (identical to Equation 2 except for the zero boundary condition for
Ψ):

E′pIp∂
4
x2

Ψ = Λpω
2Ψ Ψ(x2 |Γp) = 0 ; ∂x2Ψ(x2 |Γp) = 0

The x1-wavenumber can then be determined by reporting the expression of w(x1, x2),
in the bilaplacian equation governing the plate P. For each eigenmode ΨI , and remarking
that E′pIp∂

4
x2

ΨI = Λpω
2
I Ψ

I , one obtains :

E′pIp

[
(k′Iω )4ΨI − 2(k′Iω )2∂2

x2
ΨI

]
= Λp(ω2 − ω2

I )ΨI (14)



Hence, at frequencies lower than ωI , the wavenumbers are complex valued or purely
imaginary which corresponds to propagative damped waves or evanescent waves. Finally
for frequencies higher than the clamped plate eigenfrequencies ωI , a real positive root
exists and the wave propagates without damping. Note also that these guided waves are
alternatively associated with symmetric and anti-symmetric modes of the clamped plate.

3. NUMERICAL VALIDATION

The cell is modeled through a 3D finite element model. The implementation of the
eigen-value problem is performed using the WFEM [2]. The numerical model captures
all the mechanisms (shear, longitudinal, torsional, and flexural waves) existing in the
structure, and the resulting dispersion diagram shows different branches (Fig. 2).

Figure 2: Dispersion curves associated with the unidirectionally ribbed plate. WFEM
computation (◦), analytical homogenized model : flexural guided waves in the plate (−),
flexural (−), torsional (−), longitudinal (−) and shear waves (−) in the stiffner

Figure 2 compares the proposed homogenized model with the WFEM computation.
One notices a good agreement between the numerical simulation and the wavenumbers
predicted by the homogenized model. The proposed model eases the understanding of
the dispersion diagram. The flexural and torsional kinematics are identified. The cut-on
frequencies of the guided modes are correctly estimated, as well as the the activation of
torsional kinematics.

The flexural wave in the beam is affected by the effective mass of the internal
resonating plate, and singularities associated with symmetric modes appear. Significant
unconventional dispersion arises around the symmetric modes of the plate. In these
frequency bands corresponding to negative effective mass, the flexural wave is strongly
attenuated. The torsional waves are affected by the effective rotational inertia and
effective spring rigidity of the internal resonating plate, and singularities corresponding
to anti-symmetric modes appear. In frequency bands where the effective rotational inertia
and torsional spring rigidity strongly fluctuate, the torsional waves are either evanescent



or damped. The reader may refer to [9] for a detailed analysis of these atypical dispersion
features.

4. EXPERIMENTS ON UNI-DIRECTIONALLY RIBBED PLATE

This section is devoted to experiments performed on uni-directionally ribbed panel.

4.1. Investigated structure and instrumentation

The uni-directionnaly ribbed plate under study is described below and depicted in
Fig. 3. Both the plate and the ribs are made of aluminium. The plate (750 × 600 × 1 mm)
is ribbed with 8 stiffeners (600 × 10 × 5 mm) spaced from 90 mm.

Figure 3: Uni-directionally ribbed plate under study

Experimental setup : the structure is freely suspended and excited by a shaker with
a random noise in the frequency range 0-2kHz. The excitation point is located on the
central stiffener. An impedance head screwed on the shaker’s output gives the input force
and acceleration. The velocity field is measured by a scanning vibrometer. The scan is
performed on a line along the excited stiffener.

Experimental flexural dispersion curve recovery : the wavenumber extraction
technique from experimental measurements is the Inhomogeneous Wave Correlation
(IWC) method developed by [10, 11]. The principle is to project the experimental field
on a set of inhomogeneous waves. Introducing a correlation index depending on the
propagation parameters, the IWC algorithm estimates the wavenumber from the spatial
field. In experimental context, the algorithm simultaneously uses the coherence function
to weight the accuracy of the estimation. Identifying the maximum of this index allows to
determine the propagation features. Details about outline and developments are explained
in [10] and [11]. Experimental flexural dispersion curve is then recovered and compared
to the analytical one.



Figure 4: Flexural dispersion curves (a) analytical (−) experimental with random noise
excitation signal (− + −)

4.2. Flexural wavenumber in the unidirectionally ribbed plate

Figure 4 shows the estimated dispersion curve. These measurements show that the
homogenized ribbed plate model predicts correctly the wavenumber along a stiffener. The
agreement with IWC is good over the whole frequency range in terms of frequency and
amplitude and confirms that the experimental phenomenon is accurately captured by the
homogenized ribbed plate model.

5. CONCLUSIONS

Asymptotic homogenization theory applied to a periodic ribbed plate allowed
predicting its macroscopic behavior accounting for inner resonance. This model enabled
to identify bending and torsion mechanisms associated with both the plate and the
beam. These theoretical predictions of the wavenumbers and resonance frequencies
have been successfully compared to WFEM computations. All the branches of the
dispersion diagram are identified from the homogenized model. The latter captures
correctly the local resonances appearing on the flexural and torsional branches as well as
cut-off frequencies of the torsional and guided waves. The experimental measurements
post-processed with IWC method enable to identify the flexural dispersion curve. The
IWC method estimates the flexural dispersion curves from measurements. Although the
IWC appears sensitive to noise, the experimental wavenumbers are in good quantitative
and qualitative agreement with the theoretical predictions.

The good consistency between analytical, numerical and experimental dispersion
curves demonstrates the relevance of the homogenized models to describe locally
resonant uni-directionally ribbed plates.
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