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ABSTRACT

A common problem in acoustical applications is the determination of directions
of arrival (DoAs) of sound at a receiver. This work aims to address this problem
in situations involving potentially multiple simultaneous sound sources by use of
spatial filtering, or beamforming, algorithms with a spherical microphone array.
This presents a two-level inferential problem of first determining the number of
sound sources and then their locations. The solution under investigation here
is a probabilistic model-based method, leveraging Bayesian analysis to match
analytic models to experimental data. In this method, a large number of models
are simulated, predicting the sound field created by various numbers of sources at
different positions around the receiver. These predictions are then evaluated against
the measured data in order to select the simplest such model that can adequately
match observations, thereby estimating first the number of sources, then their DoA
information. This paper discusses the impact of microphone array configurations
upon DoA resolution. It additionally estimates performance of the method based on
experimental results for simultaneous multiple sound sources, particularly in noisy
or reverberant environments.
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1. INTRODUCTION

This work sets out to evaluate a method of determining the directions of arrival
(DoAs) of simultaneous sounds from multiple sources at a receiver. This presents a
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twofold challenge of determining both the number and location(s) of the detected sound
sources. A spherical microphone array is used to collect sound pressure data, from which
is extracted directional information via spherical harmonic beamforming. A probabilistic
Bayesian algorithm is then employed to determine first the number of discrete sources
present, followed by their strengths and locations.

Spherical microphone arrays have seen much development in recent years due to their
inherent directional flexibility and ability to support three dimensional beamforming. [1]
This latter feature, beamforming, is a process of spatially filtering incoming sound based
on its direction of arrival in order to create arbitrary directivity patterns for the array. This
is accomplished by applying specific weighting factors to the detected sound pressure
around the surface of the spherical array. [2] The array used in this work consists of 16
omnidirictional microphones embedded in a rigid sphere in a nearly-uniform distribution
across its surface. Through beamforming, this array can be used to detect and map the
directions of incident sound energy.

The challenge then remains to make sense of this energy mapping and to discern
from it the number and positions of sound sources outputing the energy. This work
investigates the capabilities of a two-tiered model based Bayesian inference algorithm
to determine these features. [3] Similar work has been conducted, using two levels of
Bayesian inference to determine source number and position, with data collected using
different microphone arrays including coprime arrays and a simple two-microphone array.
[4] [5] However, to the best of the authors’ knowledge, the work described herein is the
first time that an algorithm of this sort has been used to analyze data collected with a
spherical array.

This paper will present in section 2 a brief description of the beamforming techniques
employed, and the formulation of the models to be evaluated. A more thorough discussion
of the work will be available in an upcoming paper. [6] Section 3 will present the two-
tiered Bayesian framework. Section 4 presents some initial results of this work, while
section 5 discusses them and concludes the paper.

2. BEAMFORMING AND MODEL FORMULATION

The technique of beamforming underlies two essential tasks in this work. It is used
both to map the incoming sound energy over the sphere, and to formulate models for
evaluation by the Bayesian algorithm. For convenience, the relevant calculations are
performed in terms of spherical harmonics. These are defined as
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where θ and φ are azimuth and elevation angles and n and m are, respectively, order and
degree of spherical harmonics. [7] Pm

n (·) is the Legendre function of order n and degree m
and j =

√
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In order to express the sound pressure over the sphere in terms of spherical harmonics,
the spherical Fourier transform can be used to find the spherical harmonic coefficients pnm

by
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4π
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where M is the number of microphones, θi and φi represent the angular position of the ith
microphone, k is the wave number, r is the radius of the sphere, and ∗ denotes the complex
conjugate. [2] Spatially filtering pressure data to selectively listen in some direction
θl, φl can then be accomplished by applying beamforming weights w∗nm(k, r, θl, φl) to the
transformed pressure signal, giving the beamformed data

D(θl, φl) =

N∑
n=0

n∑
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where N is some finite maximum spherical harmonic order and
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Here, bn represents modal amplitude which is given by

bn(kr) = jn −
j′n(kr)
h′n(kr)

hn(kr), (5)

where jn and hn represent, respectively, the spherical Bessel and Hankel functions of the
first kind and the prime signifies the derivative with respect to the argument. [2] Sweeping
the listening direction of equation 3 over all angles can thus produce a directional map of
sound energy over the sphere, with an angular resolution dictated by the maximum order
N of the spherical harmonics employed. This maximum order is, in turn, a function of the
number and configuration of microphones in the array, with more microphones generally
allowing for a higher order spherical harmonic representation of the sound field. [2]

The models to be evaluated by the Bayesian algorithm can be expressed in a similar
way. Here, the model needs to represent potentially multiple concurrent sound sources,
so

HS (Θs, θ, φ) =

S∑
s=1

Asg(Θs, θ, φ) (6)

represents a sum of contributions to the model over some number S of sources, where As

is the amplitude of each contribution and g provides its shape and direction. Specifically,
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N∑

n=1

n∑
m=−n

Ym∗
n (Θs)Ym

n , (7)

where ΘS = {θ1, ..., θS ; φ1, ..., φS } denotes the directions of the modeled sources. This
equation is, itself, equivalent to that of a beam pattern listening in direction Θs. [8]

3. MODEL-BASED BAYESIAN ANALYSIS

This work uses Bayes’ Theorem in two distinct but interrelated tasks: model selection
and parameter estimation. Model selection in this case consists of selecting the right
number of sound sources to include in the model, while parameter estimation involves
choosing the angles and amplitudes for each source.



If Hi = [Hi(Θi, θ, φ)] is allowed to represent a particular model (see equation 6) and
D = [D(θ, φ)] represents some measured data set (see equation 3), then Bayes’ Theorem
can be stated as

p(Hi|D) =
p(D|Hi)p(Hi)

p(D)
, (8)

where p(·) represents probability and p(a|b) represents the probability of a given b.
This equation describes model selection, the first tier of Bayesian inference employed.
p(Hi|D), the probability of the model being true given some data, is expressed as a
function of p(Hi), the prior probability of the model based on previous knowledge
(assigned uniformly according to the principle of maximum entropy), p(D), the
probability of observing the data which simply acts as a normalizing constant, and
p(D|Hi), the evidence term, representing the likelihood of the data occurring should the
model be true. [3]

Likewise, the second tier of inference can be expressed as

p(Θ|D,H) =
p(D|Θ,H)p(Θ|H)

p(D|H)
, (9)

where the subscripts have been dropped for simplicity. Here, the probability of some
parameter set Θ = {θ; φ; A} is to be determined for some already chosen model H.
Since the probabilities are normalized and p(D|H) is independent of Θ, equation 9 can
be integrated over the entire parameter space to yield

p(D|H) =

∫
Θ

p(D|Θ,H)p(Θ|H). (10)

Next, p(D|Θ,H) can be found as a function of the squared error between D and
H, where both are two-dimensional arrays over θ and φ determined above. [6] With
p(D|Θ,H) in hand, equation 10 can be used to determine p(D|H), since p(Θ|H) is
prior knowledge. Thus equations 8 and 9 can then be evaluated to find the posterior
probabilities for the models and their parameters, respectively. By this method, both
inference steps can be completed using only the comparison of modeled data to
experimental data. This comparison is carried out in a random nested sampling scheme
to be presented in more detail in an upcoming publication. [6]

Once the posterior probabilities, p(H|D), for each model have been determined, they
can be compared using a Bayes factor relating the probability of two adjacent models to
one another. This can be expressed logarithmically in decibans by

Li j = 10 log10

(
p(Hi|D)
p(H j|D)

)
. (11)

This factor is used to compare the probability of one model (number of sources) to the
previous one as the number of sources is incremented. The model that yields the greatest
Bayes factor is considered to be the correct one. This selection criterion serves as an
implementation of Occam’s razor, favoring the simplest model that can adequately fit the
data without overfitting.

4. EXPERIMENTAL RESULTS

Some preliminary results are included below for data collected from three sound
sources (S = 3). Measurements of three impulse responses were taken with the



loudspeaker source located between 1 and 1.5 meters from the spherical array receiver.
The receiver was a rigid sphere, with sixteen microphones sampling its surface in a
nearly-uniform arrangement. The three impulse responses were recorded sequentially,
then added, after windowing out room reflections, in order to represent multiple
simultaneous sources. The source directions are (5◦, 60◦), (135◦, 140◦), and (270◦, 90◦).
Finally, white noise was convolved with the combined impulse responses to create the
signal to be analyzed.

Equation 3 is then applied to these pressure data, with the look direction swept over all
angles. The results of this process are shown in figure 1 (a). The Bayesian model selection
process described above is then executed, ultimately selecting the model shown in 1 (b).
The directions of arrival results from this model selection are displayed in table 1. The
model selection process was repeated fifteen times in order to evaluate its consistency.

Figure 1: Directional mapping of sound energy over the sphere for three sound sources
located at (5◦, 60◦), (135◦, 140◦), and (270◦, 90◦). (a) Representation of experimental
data generated by applying the beamforming equation 3 over all angles to the measured
pressure data. (b) Analytic model determined by the Bayesian model selection process to
fit the data.

Figure 2 displays the mean evidence for each number of sources, up to five. Note that
while the three source model did not have the highest evidence in absolute terms, it did
have the highest Bayes factor. As such, it was selected as the correct model because more
complex models did not offer the same degree of improvement in evidence, indicating
that the further complexity was unwarranted.

5. DISCUSSION AND CONCLUSION

By simple inspection, it is not possible to locate sound sources in figure 1. For a lower
number of sources, it may be possible to locate sources by correlating them with maxima



Table 1: Results of the DoA determination algorithm. True position is the position of the
speaker when the signal was recorded, estimated position is the position determined by
the Bayesian model selection process, estimate deviation is the total variance between the
fifteen runs of the algorithm, and the error refers to the difference in azimuth and elevation
between the estimated position and the true position.

Source Number: 1 2 3
True Position (5◦, 60◦) (135◦, 140◦) (270◦, 90◦)
Estimated Position (8.7◦, 72.4◦) (125.8◦, 148.6◦) (254.1◦, 71.5◦)
Estimate Deviation (±8.6◦,±8.2◦) (±17.5◦,±1.4◦) (±7.7◦,±7.4◦)
Error (3.7◦, 12.4◦) (9.2◦, 8.6◦) (15.9◦, 18.5◦)

Figure 2: (a) Comparison of the mean Bayesian evidence for each number of sources,
one to five. The error bars represent the total variation in evidence observed over fifteen
repetitions of the algorithm. (b) Bayes factor, comparing the current model to the previous
one.

in sound energy, but as the number of sources grows, this becomes impractical. However,
the Bayesian model selection process employed in this work was able to make some
sense of the data and make reasonable estimates of the source locations. This suggests
that the two-tiered system of Bayesian analysis is capable of accomplishing its tasks of
determining the number and locations of sound sources.

However, a certain degree of ambiguity in the results cannot be denied, and this even
with the elimination of room reverberation from the data. The moderate inaccuracy and
imprecision of the results seen in table 1 are likely the result of the limited resolution of the
sixteen-channel array employed in this work. Due to this resolution, spherical harmonics
of only up to second order could be used to describe the sound field. With this in mind,
further investigation is planned using a 32-channel spherical array. This should enable



higher order beamforming, which in turn should allow for greater angular precision.
The influence of this precision on the behaviour of the model selection scheme is to
be determined. Additionally, the performance of the algorithm with reverberant energy
present in the recorded sound field remains to be characterized. It is hoped that a higher
order microphone array will be able to achieve more precise models of higher numbers of
sound sources and that the probabilistic model selection process will be sufficiently robust
to be able to count and localize these sources in a more complex acoustical environment.
However, these remain subjects for future research.
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