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ABSTRACT 

In this investigation, a structural-acoustic coupling model is established, which is 

composed of the thin orthotropic annular sector parallel double-plate with various 

elastic boundary conditions and an acoustic cavity with various impedance walls. 

Under the current framework, the admissible displacement and sound pressure of 

the coupling system are generally expressed as superposition of simple periodic 

functions on the basis of the modified Fourier series method. The setting of the 

elastic boundary conditions is realized by artificial virtual spring technology. The 

vibro-acoustic characteristics can be obtained by Rayleigh-Ritz technique. Unlike 

most of the existing studies, the presented method can be readily applied to a wide 

spectrum of the vibro-acoustic problems with no need of modifying the basic 

functions or adapting solution procedures, such as different boundary conditions, 

varying materials and geometric parameters. The fast convergence of the present 

method has been given by selecting smaller truncation values. In addition, the 

accuracy of the present method has been proved by being compared with the finite 

element method (FEM). Numerous new results are also presented which can be the 

benchmark for the future research. 
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1. INTRODUCTION 

In the context of the extensive use of orthotropic material in engineering applications, 

many models could be abstracted into a fluid-structure coupling system composed of an 

acoustic cavity and the orthotropic annular sector parallel double-plate. Therefore, it is of 

great practical significance to establish an effective analytical model to explore the 

coupled mechanism and the vibro-acoustic characteristics, which can satisfy higher 

requirements of vibration and low noise control. 

There have been some literatures for the rotational structural-acoustic coupling 

systems including both the structure domain and the sound field. Li et al. [1] proposed a 

method of Radiation Efficiency Analysis of Structural Modes to study the sound-

vibration coupled characteristics of the cylindrical shell coupled with internal floor 

partition. Henry et al. [2, 3] established a model composed of a typical aircraft plate 

coupled with a rigid-wall cylinder with attached piezoelectric actuators in service 

conditions to realize the active control of sound transmission. Gardonio et al. [4] 

investigated the plane wave transmission characteristics of the circular cylindrical 

sandwich shell in the aerospace industry for satellite launch vehicles based on a modal 

interaction analysis (MIA). Lee et al. [5] examined the insertion loss of a cavity-backed 

semi-cylindrical enclosure panel, and the theoretical results were validated by the 

experimental results. According to a circularly metamaterial model, Yao et al. [6] 

analyzed the sound radiation properties based on the numerical simulations for structured 

metamaterials. It was found that it is an efficient method to reduce the sound vibration 

over the negative-mass frequencies with increasing the thickness of the metamaterial 

barrier. Rocha et al. [7] established a structural-acoustic coupling system composed of 

aircraft cabin section and the fuselage structure to predict turbulent boundary-layer-

induced noise in the interior of aircraft cylindrical cabins. Pan et al. [8] modeled and 

analyzed the noise radiation of a cylindrical enclosure on the excitation of the internal 

acoustic which placed inside the water. From these researches, we can find that there are 

few studies on the interaction and coupling mechanism of the structure-acoustic coupled 

system. In addition, the elastic plates in the above studies are mostly single plates rather 

than double plates, and the filling materials are mostly isotropic rather than orthotropic. 

In view of the limitations of existing research, this paper establishes an orthotropic 

annular sector double-plate cavity coupling system to study the vibro-acoustic coupling 

characteristics. The correctness of the established analytical model has been validated by 

being compared with the results achieved by FEM. On this basis, some new results and 

conclusions are given. 

 

2.  THEORETICAL FORMULATIONS 

 

2.1 Description of The Structural-Acoustic Coupling System 

As shown in Figure 1, the coordinate system and geometry model of the structural-

acoustic coupling system with the elastic boundary conditions are given here which can 

effectively study the vibro-acoustic coupling characteristics. This coupling system is 

composed of the thin orthotropic annular sector parallel double-plate with various elastic 

boundary conditions and an acoustic cavity with various impedance walls. First of all, an 

integral cylindrical coordinate system (O- rθz) and a local coordinate system (O′- sθz) 



for this coupled model are established. s represents the difference between the out radius 

R1 and the inner radius R0. In addition, θ and z are represented as the angle and height 

directions of studied model. For the annular segment plates and acoustic cavity, the same 

dimensions are outer radius, inner radius and sector angle dimensions (ϕ), respectively. 

In this model, the thickness of upper plate is marked as hp1, and the thickness of lower 

plate is marked as hp2, separately. In addition, the thickness of the cavity is donated as hc. 

The boundary conditions are simulated by artificial spring technology. As shown in 

Figure 1, the boundary spring is composed of the linear spring (kw) and the rotating spring 

(Kw) evenly distributed on the four edges of the orthotropic plate. In order to further study 

the vibro-acoustic characteristics of the coupling system, the point sound source Q placed 

inside the cavity can be added to study the coupling response. 
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Figure 1:The coordinate system and geometry model of the annular sector parallel double-plate-

cavity coupling system with various elastic boundary conditions 

 

2.2 Admissible Functions of Displacements and Sound Pressure    

In this paper, a modified Fourier series method is applied to represent the displacement 

functions of the orthotropic thin plate and the sound pressure functions of the cavity. The 

expression is a form of superposition functions, consisting of the product of cosine 

functions and supplementary polynomials. The admissible vector functions of double-

plate-cavity are written as: 
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where the displacement of the plate is marked as wg (g=1,2). It should be pointed out that 

the g=1is for the upper plate and g=2 is for the lower plate. The internal displacement 

vector and the supplementary polynomials are expressed as W


 and B
Wl

( l =1, 2). 

Besides, the sound pressure expression and the supplementary polynomials of the cavity 

are represented as P


and S
Pi

( i =1-6). The unknown Fourier vectors are A
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2.3 Energy Equation of the Structural-Acoustic Coupling System 

In this section, the Lagrange energy equations of the coupling system are mainly 

described for the annular sector double-plate-cavity coupling system. First of all, the 

energy equations 
plate

gL  of the plate and the energy equations
cavityL of the cavity are given 

as follow: 
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in which 
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gT  and 
cavityT  are the total kinetic energy. 
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gU  and 
cavityU  are the total 

potential energy. 
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gV  is the spring potential energy stored at the boundaries. 
wallW  is the 

dissipated acoustic energy of the impedance walls. Besides, 
c-p

gW  and 
p-c

gW  are the 

interface coupling potential energy. In addition, 
soundW  is the work done by a point sound 

source. 

The total kinetic energy equations T of the structural-acoustic coupling system are: 
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where 
pg and 

c  are the density of the plate and the cavity. The symbols 
pg  and 

c  

are the circular frequencies of the plate and the cavity, respectively. 

The total potential energy equations U of the coupling system are: 
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in which g

rE  and gE  are modulus, and g
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As mentioned earlier, the energy expression of the spring potential energy  
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technology. The realization of arbitrary boundary constrains is achieved by setting the 

spring stiffness of the four edges. The specific expressions of them can be obtained as: 
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The coupling potential energy is generated by mutual contact extrusion of sound pressure 

and vibration displacement between the contact surface of the orthotropic thin plate and 

the cavity, which can be expressed as: 
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Wwall expresses the dissipated acoustic energy of the impedance walls [9-11], 

which is: 
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where j is the pure imaginary and   expresses the circular frequency of the cavity. The 

corresponding impedance value for each wall surface Sq (q=1, 2, 3, 4) is Zq which the 

complex acoustic impedance. 

The work done by the point sound source W𝑠𝑜𝑢𝑛𝑑 can be written as: 
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in which A is the amplitude of the source (in kg/ s2), δ is the 3D Dirac function. The wave 

number is k=ωc/c0. The point sound source is located at (r0, 
0  , z0). 

 

2.4 Solution of Equation of the Structural-Acoustic Coupling System 

The solving equation of the coupling system can be obtained on the basis of the 

Rayleigh-Ritz energy method, which can be expressed as: 
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The more simplified solving equations can be rewritten as a matrix form : 
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in which 
plateK
g and 

cavityK  are stiffness matrices of the plate and the cavity. 
plateM
g  and 

cavityM  are the corresponding mass matrices . 
cavityZ  is the impedance matrix. Beside, 

c-pC
g  and 

p-cC
g  are the coupled matrices with the equality relation:  p-c c-pC C

T
g g . Q is the 

sound source vector worked inside the cavity. But in Equation 24, circular frequency 

has linear terms and nonlinear terms. So, it needs to further transformation according to 

the Refs. [10, 12]: 

 K M G F 

 
(25) 

Up to now, we can get the natural frequencies easily. At the same time, the 

displacement and sound pressure admissible function can also be gained. 

 

3.  NUMERICAL RESULTS AND DISCUSSIONS 

In this part, a number of numerical simulations will be discussed to validate the 

applicability of the present method in analyzing the structure-acoustic system. In all the 

following numerical examples, the physical parameters of the air cavity and the water 

cavity are exactly the same, which include the mass density ρair=1.21kg/m3, 

ρwater=1000kg/m3 and the speed of sound propagation cair=340m/s and cwater=1480m/s. 

The various boundary conditions (BC) of the orthotropic plate are described by alphabetic 

strings. Specifically, F is free-edge, S is simply-support, C is clamped edge and E is elastic 

edge. The boundary conditions of the two plates are same. 

 

3.1 Natural Characteristics Analysis of the Orthotropic Coupling System 

Because the improved Fourier series method is used for the first time to analyse the 

orthotropic annular sector double-plate cavity coupling system, it is necessary to study its 

convergence and accuracy. Table 1 gives the convergence and accuracy analysis of the 

coupled natural frequency. The geometric parameters are defined as: R1=1m, R0=0.5m, 

hp1=hp2=0.005m, hc=0.5m and ϕ=90o. The material parameters of the two clamped plates 

are chosen as: E1=20GPa, E2=10GPa, G12=5GPa, μ12=0.25 and ρp=1600kg/m3. As can be 

found from Table 2, take air as an example, the biggest difference for the worst case 

which is made the contrast of (8×8, 4×4×4) and (12×12, 6×6×6) is less than 0.13%. 

Therefore, the present method has shown good convergence. At the same time, the 

correctness of the present method has been verified through comparison with the results 

obtained by FEM. 

 
Table 1. Convergence and accuracy analysis of the structure-acoustic system 

Medium Mp×Np Mc×Nc×Qc 
Mode number (Hz) 

1 2 3 4 5 6 7 8 

Air 8×8 4×4×4 74.784 80.632 82.872 84.570 102.979 103.749 128.852 130.803 

  5×5×5 74.783 80.632 82.872 84.568 102.977 103.749 128.737 130.661 

  6×6×6 74.783 80.632 82.871 84.568 102.976 103.747 128.737 130.661 

 10×10 4×4×4 74.784 80.632 82.869 84.567 102.976 103.746 128.842 130.792 

  5×5×5 74.783 80.632 82.868 84.565 102.974 103.746 128.726 130.650 

  6×6×6 74.783 80.632 82.868 84.565 102.973 103.745 128.726 130.650 

 12×12 4×4×4 74.784 80.632 82.868 84.567 102.976 103.745 128.839 130.788 

  5×5×5 74.783 80.632 82.867 84.565 102.974 103.745 128.723 130.646 

  6×6×6 74.783 80.632 82.867 84.565 102.972 103.744 128.723 130.646 

 FEM  71.344 78.235 80.206 81.150 105.120 105.870 130.120 133.810 

Water 8×8 4×4×4 12.968 15.524 19.402 23.224 26.410 35.837 38.653 50.995 

  5×5×5 12.960 15.517 19.375 23.224 26.382 34.675 36.866 50.987 



  6×6×6 12.960 15.516 19.375 23.196 26.351 34.668 36.866 49.065 

 10×10 4×4×4 12.965 15.524 19.400 23.222 26.409 35.820 38.639 50.986 

  5×5×5 12.957 15.517 19.373 23.222 26.381 34.661 36.854 50.978 

  6×6×6 12.957 15.516 19.373 23.194 26.349 34.653 36.854 49.057 

 12×12 4×4×4 12.964 15.524 19.400 23.222 26.409 35.818 38.636 50.983 

  5×5×5 12.957 15.517 19.373 23.222 26.381 34.658 36.852 50.977 

  6×6×6 12.956 15.516 19.372 23.194 26.349 34.650 36.852 49.050 

 FEM  12.488 13.636 18.601 23.494 26.911 37.190 39.729 46.453 

For the study of this paper, the most important and fundamental objective is to 

understand the changes of the natural characteristics before and after the coupling. In 

Table 2, the frequencies of the upper plate, lower plate, acoustic cavity and coupled 

system have been given, respectively. The geometric parameters are defined as: R1=1m, 

R0=0.3m, hp1=hp2=0.005m, hc=0.8m and ϕ=60o. The material parameters of the upper 

clamped plate are chosen as: E1=50GPa, E2=10GPa, G12=2GPa, μ12=0.25 and 

ρp=1600kg/m3, while the material parameters of the lower clamped plate are chosen as: 

E1=20GPa, E2=10GPa, G12=5GPa, μ12=0.25 and ρp=1600kg/m3. From Table 2, it can be 

seen that the frequency of the coupled system with air as medium changes slightly after 

coupling, indicating that it is a weakly coupled system. Compared with the coupled 

system with air as medium, the natural frequencies of the coupled system with water as 

medium are small and dense. This is essentially the difference between strong and weak 

coupling effect caused by the physical characteristics of different acoustic medium. 

 
Table 2. Coupling degree analysis of the coupled systems filled with air or water 

Medium Frequency type Mode number (Hz) 

1 2 3 4 5 6 7 

 Upper plate 67.444 104.321 160.413 166.194 200.210 228.320 267.900 

 Lower plate 53.350 95.540 118.585 152.496 169.202 215.320 220.892 

Air Acoustic cavity 212.500 226.198 254.643 310.357 331.661 405.904 417.828 

 Coupled system 54.570 68.793 94.482 103.186 117.309 151.340 159.168 

Water Acoustic cavity 925.000 984.626 1108.445 1350.967 1443.702 1766.876 1818.783 

 Coupled system 10.651 21.960 24.484 27.913 38.551 41.103 44.469 

Next, Table 3 gives the natural frequencies of the coupled system under various elastic 

boundary conditions. The geometric parameters are defined as: R1=1m, hp1=hp2=0.005m, 

hc=0.8m and ϕ=60o. The material parameters of the two plates are chosen as: E1=20GPa, 

E2=10GPa, G12=5GPa, μ12=0.25 and ρp=1600kg/m3. It can be found from Table 3 that the 

radius ratio and boundary condition have an important effect on the natural characteristics 

of the coupled system. Specifically, the natural frequency will increase with the increase 

of radius ratio and spring stiffness. 

 
Table 3. Natural frequencies of the coupled system under various elastic boundary conditions 

Medium R0/R1 BC Mode number (Hz) 

1 2 3 4 5 6 7 8 

Air 0.2 EFEF 24.729 29.149 29.183 37.463 53.488 53.494 60.492 60.781 

  EEEE 43.876 51.237 74.088 74.232 79.784 79.947 105.423 106.200 

  ECEC 47.630 53.728 86.008 86.114 93.173 93.349 130.086 130.845 

 0.6 EFEF 70.370 71.777 72.110 77.536 77.559 78.684 94.258 94.263 

  EEEE 73.972 79.990 87.505 87.860 111.005 112.541 133.148 133.184 

  ECEC 85.959 90.546 104.904 105.253 138.246 139.266 184.102 185.136 

Water 0.2 EFEF 3.852 5.996 6.270 10.972 11.881 14.097 14.143 15.868 

  EEEE 7.224 14.615 15.338 15.493 16.290 24.206 25.314 27.662 



  ECEC 8.234 18.778 19.462 19.623 20.513 32.815 34.707 37.809 

 0.6 EFEF 10.361 12.212 13.427 18.880 18.976 27.360 27.364 31.659 

  EEEE 11.519 15.838 17.326 25.749 26.331 33.309 33.430 38.038 

  ECEC 14.483 21.087 22.721 35.421 36.355 51.195 51.892 55.956 

 

3.2 Forced Response Analysis of The Orthotropic Coupling System 

The next section focuses on the difference of the forced response between the weak 

and strong coupling system. The geometric parameters and the material parameters used 

in Figure 2 are exactly the same as those used in Table 1. The unit point sound source is 

applied at (R/4, ϕ/4, hc/4). It can be seen from Figure 2 that the response curves between 

the weak coupling system filled with air and the strong coupling system filled with water 

are very different. An obvious difference is that the response amplitude of the strong 

coupling system is lower compared with the weak coupling system, which indicates that 

the consumption of water to external excitation is more significant. 

 

    
(a) displacement at (R/2, ϕ/2) (b) sound pressure at (R/2, ϕ/2, hc/2) 

Figure 2:Response of the coupled system with different acoustic medium 

 

Next, Figure 3 shows the response curves of the coupled system filled with air under 

different impedance boundary conditions. The impedance boundary conditions of the air 

cavity are set to be: rigid and Z=ρcc0(50-j) on the four uncoupled walls. The unit point 

sound source is applied at (R/8, ϕ/8, hc/8). From Figure 3 we can find that the peak values 

of the response curves decrease with the increase of the number of the impedance walls. 

And no matter what impedance boundary conditions, the trend of the curves is not 

affected. 

 

                
(a) displacement at (3R/8, 3ϕ/8) (b) sound pressure at (3R/8, 3ϕ/8, hc/4) 

Fig.3 Response of the coupled system filled with air under different impedance boundary 

conditions 
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4.  CONCLUSIONS 

In this paper, an orthotropic annular sector double-plate cavity coupling system is 

established to study the vibro-acoustic coupling characteristics. Based on the study on the 

natural characteristics of the coupled systems, the sound pressure and displacement 

responses under the excitation of a point sound source with various impedance boundary 

conditions have been studied. The results obtained by the present method have been 

compared with those obtained by FEM. On this basis, some new results and conclusions 

are given: 

(1) The coupling system filled with air is weakly coupled system and the coupling 

system filled with water is strongly coupled system. 

(2) The natural frequency will increase with the increase of radius ratio and spring 

stiffness. 

(3) The response amplitude of the strong coupling system is lower compared with the 

weak coupling system, which indicates that the consumption of water to external 

excitation is more significant. 

(4) The peak values of the response curves decrease with the increase of the number 

of the impedance walls. And no matter what impedance boundary conditions, the trend 

of the curves is not affected. 
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