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ABSTRACT 

Acoustic liners are widely applied in the aircraft engines to reduce the emission of 

noise. It is important to acquire the accurate acoustic modes in the duct. A parallel 

integration scheme based on the classical Runge-Kutta method is proposed to 

calculate the eigenvalues of duct acoustic modes with a uniform mean flow and an 

impedance boundary condition. The scheme solves the left-propagating modes and 

the right-propagating modes separately by a numerical integration method. The 

transverse wavenumbers and the axial wavenumbers of different acoustic modes are 

integrated simultaneously. The scheme can deal with Ingard-Myers boundary 

condition and other modified boundary conditions without any transcendental 

hypothesis in duct acoustics. The convected instability of at most two duct modes is 

detected via the parallel integration scheme, which is also verified by the Briggs–

Bers stability criterion. The parallel integration scheme would give full numerical 

solutions of duct acoustic modes. Comparing with previous results, it provides a 

better way to determine the stability of duct modes directly. 
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1. INTRODUCTION 

Acoustic liners are widely applied in the aircraft engines to reduce the emission of 

noise. It is important to acquire the accurate acoustic impedance of a liner based on 

investigating the sound propagation in the lined ducts. The inverse method [1] based on 

the analytical models of sound propagation in ducts is usually adopted to compute and 

optimize the acoustic impedance. The mode-matching method is usually preferred to 

reconstruct the acoustic pressure field in different segments of the ducts among different 

analytical models, and the sound modes are obtained by solving the transcendental eigen 

equations and dispersion relation. 
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A root-finding method is an optional way to find the eigenvalues of each sound mode. 

Ko [2] employed the Newton-Raphson method and the eigenvalues of a nearly rigid wall 

were used as the initial values for the iteration, but the author did not discuss the 

robustness of the method. Alonso and Burdisso [3] solved the eigen equations by 

minimizing the absolute value of the equations. The authors used the Nelder-Mead 

simplex method to perform the minimization from very low frequencies with the 

eigenvalues of the rigid-walled duct used as the initial values for the calculation. The 

method is applicable to the resonator-type liners which are equivalent to a rigid wall at 

relatively low frequencies. Eversman [4, 5] proposed a more general technique on the 

basis of the classical Runge-Kutta method. It transformed the eigenvalue problem into an 

ordinary differential equation that described the changing rate of eigenvalues as a function 

of the admittance value. The eigen solutions of a hard-walled duct were used as initial 

values and the eigenvalue problem would be resolved by an integration method. The 

transverse wavenumbers were obtained by a classical Runge-Kutta method and the axial 

wavenumbers were obtained via the dispersion relation. The method is effective in 

obtaining accurate duct modes when the imaginary part of the admittance is non-positive. 

However, if the imaginary part of the admittance is positive, it might lead to wrong 

propagating directions of some special duct modes.  

The objective of study is to develop a general numerical scheme to explore the eigen 

solutions to the transcendental equations of a lined duct with uniform mean flow and the 

propagating direction of each sound mode. The scheme is named as ‘parallel integration 

scheme’ in that the transverse wavenumbers and axial wavenumbers are solved out 

simultaneously through a classical Runge-Kutta method.  

The structure of the paper is as follows: The parallel integration scheme is discussed 

in Section 2, the integration procedure and numerical results for the eigen solutions of a 

rectangular duct with one-sided soft wall is presented in Section 3, the propagating 

direction and stability of different sound modes are disscussed in Section 4, and 

conclusions are drawn finally.Please, do not insert any page numbers and do not include 

any headers of foot notes, except in the first page of the manuscript for the e-mail 

addresses. 

 

2.  ANALYTICAL MODEL 

Based on the fourth order Runge-Kutta method, the parallel integration scheme 

solves the Cauchy’s initial problem specified as follows: 

 

The unknown function  can be a scalar or vector in Equation 1. To take the 

two-dimensional vector function  as an example, Equation 1 can 

be expressed below: 

 

The classical Runge-Kutta method is defined by 
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and the step size , is carefully picked to be a small positive value. 

 

2.1 2D hard-walled rectangular duct with a uniform mean flow 

The 2D infinite long rectangular duct is shown in Fig. 1 below. The Mach number of 

the uniform mean flow is  Both sides of the duct are hard.  

The sound propagation inside the duct is dominated by the Convected Helmholtz 

Equation: 

 

The harmonic solution   represents the real frequency  nn Equation 5, the 

dimensionless variables are obtained by the following transformation: 

 

Fig. 1 A 2D infinite long rectangular duct 



 

 

The hard-walled boundary condition is: 

 

The general solution of Equation 5 is given by a Fourier modal sum: 

 

Substituting Equation 7 to Equation 8, we have  

 

and the dispersion relation 

 

The axial wavenumber of the mode,  is solved through Equation 10 

 

 

and the group velocity is obtained through a deviation of Equation 11 

 

When , the axial wavenumbers and the group velocity are real. Since 

the right-going mode possesses a positive group velocity and the left-going mode 

possesses a negative group velocity, thus 

 

 

then the directions of the two modal solutions of Equation 10 are determined: 

 

 

When   the axial wavenumbers and the group velocity are complex 

numbers. The amplitudes of the sound modes would not be magnified due to the passive 

and hard-walled duct, so the exponentially increased solution should be abandoned. 

Therefore, the axial wavenumber of a right-going mode,  should possess a positive 

imaginary part, and the axial wavenumber of a left-going one,  should possess a 

negative imaginary part.  

Along with Equation 11-14, a new function of the square root is defined in this essay: 

 



 

Now the Convected Helmholtz Equation of a 2D-rectangular duct with a uniform flow 

and two-sided hard walls can be solved completely: 

 

with 

 

 

 

 

2.2 2D one-soft-walled rectangular duct with a uniform mean flow 

The 2D infinite long rectangular duct is presented in Fig. 2 below. The Mach number 

of the uniform mean flow is  A locally-reacting acoustic liner is placed at  and 

its dimensionless admittance is . 

The boundary condition is: 

 

 

Equation 18b is known as the nngard-Myers boundary condition. 

We have the same result as Equation 16 by substituting Equation 18a to Equation 8. 

The transcendental eigen equation is obtained below by substituting Equation 16 to 

Equation 18b 

 

From the above, the transverse wavenumbers and the axial wavenumbers of different 

sound modes in Equation 16 can be solved along with the dispersion relation in Equation 

10.  

Equation 19 remains valid for and it turns out to be the hard-walled boundary 

condition. nf the admittance is slowly changed from  to the target admittance of the 

acoustic liner in a continuous way, the wavenumber solutions of Equation 10 and 19 

would also change continuously from hard-walled solutions to those with liner treatments.  

To consider the admittance  as a function of a real parameter , suppose 

the admittance of the soft wall is  and  then the wavenumber solutions of 

 

Fig. 2 A 2D rectangular duct with a locally-reacting liner 



Equation 10 and Equation 19 are depended on  thus  

 

and they have the initial values at  which has been discussed in Section 2.1. 

The following ordinary differential equations are obtained by deviating Equation 10 

and Equation 19 with respect to  

 

 

Thus 

 

 

where 

 

To solve for  and  in Equation 22 with the initial values, the classical Runge-

Kutta method is applied to calculate the targeted values of eigen solutions of Equation 19.  

The hard-walled initial values of transverse wavenumbers should be nonzero to 

guarantee that Equation 22 is free of singularity. The transverse wavenumber  of a 

plain wave in a hard-walled duct equals to zero, so this initial value should be replaced 

by a small positive value. Considering the limit of  when , from Equation 19, 

we have 

 

where  is the initial step away from  The recommended value[6] is  

and we can apply the new initial values of the transverse wavenumber obtained from 

Equation 23 into the integration scheme to calculate the targeted eigen solutions of the 0th 

modal solution. 

The initial value should be carefully discussed at   Substituting   to 

Equation 19, we have 

 

The normal zeros of the right side in Equation 24 are  which are just 

the eigen solutions of the duct with two-sided hard walls. They are entitled as ‘normal 

solutions’ in this paper. Besides that, Equation 24 may also have asymptotic solutions at 

infinity. nf , we have 

 

 

 

Since the parameter  , the imaginary part of  should be positive. nf so, Equation 

25 will have extra asymptotic solutions at infinity (simply entitled as ‘extra solutions’).  

As Equation 25a indicates, we can use a large pure imaginary number as the initial 



value of   to solve for the extra solutions. The initial values of two axial 

wavenumbers are obtained through Equation 17, and then the initial values of   are 

calculated from Equation 24. The initial parameter  will be complex numbers and the 

parallel integration scheme cannot be applied directly. Supposing the initial value of  

obtained from the previous step is   the imaginary part of   is 

changed from  to 0 with the fixed real part. Thus, 

 

Then 

 

 

Substituting Equation 27 to Equation 22,  and  are solved then. nn Step n, the 

classical Runge-Kutta method is applied to integrate  from  to . The 

eigenvalues,  and , are also updated to be the new initial values of the next step. 

nn Step nn,  is integrated from  to . The wavenumbers during this process are 

finally changed into the target extra solutions of Equation 19. 

 
(a)     (b) 

Fig. 3. The integration path of  (a). for normal solutions; (b). for extra solutions 

 

3.  NUMERICAL RESULTS 

 

3.1 Eigen equations without extra solutions at infinity 

Usually, the eigen equations only possess normal solutions, thus  or 

. A case of this condition is studied in this section as an illustration of the proposed 

integration scheme. As shown in Fig. 2, the physical model is a 2D straight duct of infinite 

length. At   there is a lined wall with an admittance  . The 

dimensionless frequency  is 5. Three mean uniform flow conditions are defined by the 

Mach numbers- and  The first ten mode solutions of a hard-

wall duct is calculated via Equation 17 in Table 1 below.  

 

Mode 

Transverse 

wavenumber 
Axial wavenumber 

,  
   

1+  

1-  

2+  



2-  

3+  

3-  

4+  

4-  

5+  

5-  

6+  

6-  

7+  

7-  

8+  

8-  

9+  

9-  

10+  

10-  

Table 1 Transverse wavenumbers and axial numbers of a hard-walled rectangular duct 

with uniform mean flow ( and ). 

 

The parallel integration scheme is then conducted and the trajectory of eigenvalues when 

 is integrated from 0 to 1 is shown in Fig. 3. 

 
(a) 

 
(b) 



 
(c) 

Fig. 3 Trajectory of eigenvalues when  is integrated from 0 to 1 (

.(a) , (b) , (c) . 

 

The transverse wavenumbers are selected to have a non-negative real part. The positive 

resistance assures that the duct is passive, and the axial wavenumbers correspond to this 

fact. The left-going acoustic modes always possess axial wavenumbers with a positive 

imaginary part and the right-going acoustic mode possesses axial wavenumbers with a 

negative imaginary part. The amplitudes of the sound pressure of all duct modes will not 

be magnified in the duct. 

 

3.2 Eigen equations with extra solutions 

According to Section 2.2, the eigen equations will have extra solutions at infinity when 

the Mach number of the uniform mean flow  and the imaginary part of admittance, 

, is positive. The same physical model is used here with the only difference that the 

admittance is changed to be the conjugate value in Section 3.1, . The first 

ten mode solutions of a hard-wall duct in Table 1 are still used as initial values of the 

integration scheme. To calculate the extra eigen solutions, the initial transeverse 

wavenumber is set to be , and the initial aixal wavenumbers for right-going and left-

going modes are obtained from Equation 17. For normal solutions, the initial value of the 

integration variable,  is zero and for extra solutions  is calculated from Equation 23. 

The trajectory of eigenvalues when  integrated from  to 1 is shown in Fig. 4. 

 
(a) 



 
(b) 

 
(c) 

Fig. 4 Trajectory of eigenvalues when   integrated from   to 1 (

.(a) , (b) , (c) . 

 

The trajectory of extra wavenumbers in Fig. 4(b) 4(c) is quite different from normal 

ones. The duct modes with these wavenumbers are much more sensitive to the boundary 

admittance than normal duct modes. Surprisingly, the left-going extra acoustic mode has 

an axial wavenumber with a negative imaginary part, whereas the right-going extra 

acoustic mode has an axial wavenumber with a positive imaginary part. nt implies that the 

amplitudes of sound pressure of the two duct modes have been magnified during the 

propagation in the duct.  

 

4. Discussion 

Schmid and Henningson[7] found that an unstable hydrodynamic mode in the duct can 

occur under certain conditions, which is known as the Kelvin–Helmholtz instability. To 

verify that the two extra solutions in Section 3.2 are indeed unstable duct modes, the 

Briggs-Bers causality criteria[8, 9] is applied. The causality confirms that in the duct 

mode , the axial wavenumber, of a right-going acoustic mode locates in the 

lower complex plane and that of a left-going one locates in the upper complex plane when 

. The Briggs-Bers criteria states that if the the axial wavenumber of the 

duct mode crosses the real axis while ranges from  to 0, this mode will be 

convectively unstable. The axial wavenumbers of the first 12 ordinary duct modes and 2 

extra duct modes are plotted in Fig. 5. nn Fig.5(a), the complex frequency  changes from 

  to   with a increment size of  , and in Fig. 5(b), the complex frequency  

changes from  to  with a  increment. nt is demonstrated that the ordinary duct 

modes are always stable while the 2 extra duct modes are convectively unstable as the 



axial wavenumbers cross the real axis when  changes from a large negative value 

to 0. 

 
(a)       (b) 

Fig. 5 Trajectory of axial wavenumbers when  changes from a large negative value 

to 0 .(a) , (b) . 

 

The unstable acoustic duct modes act like surface modes discussed by Rienstra [10] 

and Brambley [11]. The surface modes propagate near the surface of a circular duct and 

the amplitude of sound pressure decay rapidly in the radial direction. There are at most 

two hydrodynamic surface modes (“hydrodynamic” means they exist only with flow) 

propagating in the direction of mean flow in the duct when the nngard-Myers boundary 

condition is applied and one of them is convectively unstable. nn this paper, the unstable 

modes also exist only when the flow is present and the imaginary part of the soft wall 

admittance is positive. Differing from Riensta and Brambley’s work, there can be two 

convectively unstable duct modes propagating in opposite directions in the duct which 

have been verified by the Briggs-Bers causality criteria in the present study. nt might be 

caused by the different cross-sections of the duct. nt might also be attributed to the 

frequency-independent boundary admittance assumption of this study: the admittance is 

single-valued at each frequency and the frequency-domain eigen equations are solved by 

the integration scheme at the given frequency. 

 

5.  CONCLUSIONS 

This study proposed a parallel integration scheme to obtain the transverse 

wavenumbers and axial wavenumbers of each duct mode including extra modes. Two 

convectively unstable duct modes are found in the condition that a mean flow exists in 

the duct and the admittance of the duct wall possesses a positive imaginary. 

The integration scheme is applicable for both forward and inverse problems in the duct 

acoustics. It can be easily extended to solve the eigen equations of a 3-dimensional duct 

with other cross-sections. Furthermore, the idea of introducing of new parameters may be 

useful for the numerical solutions of acoustic modes in a non-uniform duct. 
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