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ABSTRACT 

Structural health monitoring can benefit transportation infrastructures in terms of 

pavement management systems and risk management. In this study, a new, non-

destructive, acoustic-based method for assessing and monitoring the structural 

health status (SHS) of road pavements along their operational life is presented. In 

order to validate the proposed method, an experimental investigation was carried 

out. The acoustic response of an asphalt concrete road pavement following a proper 

mechanical excitation (hereafter named acoustic signature) was recorded and 

analysed. A specifically designed microphone-based electronic system was set up 

and applied. The acoustic responses were analysed in the time and frequency 

domain. An integrated system, including the power supply, the abovementioned 

system, and data transmission equipment was set up and applied as a part of a 

research project, to collect data and extract features and information valuable to 

different stakeholders. Experimental results show that the proposed system is able 

to detect the change of the acoustic signature of the infrastructure asset over time 

using a small number of meaningful features extracted by clustering techniques. 

Consequently, it can be used to monitor the SHS of road pavements by detecting the 

onset of cracks, and keeping under observation their evolution over time.  

Keywords: Acoustic signature, intelligent structural health monitoring, feature-based 

hierarchical clustering 
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1. INTRODUCTION 
During its life time, a road pavement is subjected to repeated thermal and vehicular 

traffic loads. These loads induce stresses, strains, displacements, and vibrations into the 

pavement layers. These effects lead to the generation and propagation of several types of 

cracks until the failure of the road pavement occurs. Many methods have been proposed 

in the last decades in order to carry out the assessment and monitoring of the structural 

conditions of road infrastructures in real conditions (e.g., under traffic-related stresses), 
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or under simulated stresses. Importantly, different factors should be taken into account 

when road pavements need to be monitored. These factors mainly refer to: i) the sources 

of the above-mentioned stresses, which in turn are function of vehicle-,  and traffic-related 

features [1]; ii) the mean of propagation of traffic-induced stresses (i.e., the pavement) 

and its properties, performance, and conditions [2–6].   

Road pavement Structural Health Monitoring (SHM) usually aims at detecting surface 

cracks and rarely internal cracks. Tests and particularly Non-Destructive Tests (NDT) use 

different types of sensors([7]), vehicles equipped with cameras [8], laser scanners [8,9], 

vehicles equipped with three-axis accelerometers [10], with smartphone gyroscopes [11–

13], or accelerometers embedded or placed on the road surface [14,15]. Internal cracks 

can be monitored using Ground Penetrating Radars (GPR; see e.g., [16]).  

Intelligent solutions should be able to detect, in real-time, changes of the response of 

a monitored road pavement to stresses and loads. To this end, a SHM system may need 

to: i) identify variations of the signals collected; ii) recognize signals variations over time; 

iii) derive the frequency components corresponding to the variations above; iv) detect the 

“development” of new frequencies in the signals due to changes in the structural dynamics 

[17]. In the last decades, different Intelligent Transportation System (ITS)-based and/or 

SHM-based systems, with different data processing methods have been proposed, among 

which filter-based methods [18], Gabor filter [19], Artificial Neural Network (ANN; cf. 

e.g., [20,21], Wavelet Transform (WT) [17,22,23], or ANN combined with WT [9,12,24–

26]. Despite the high number of methods proposed, solutions are still needed to promptly 

detect “invisible” (bottom-up) structural failures, which are crucial for flexible pavements 

[27].  

Based on preliminary studies [28,29], the study presented in this paper aims at solving 

some of the issues listed above (see Section 2). Section 3 deals with the description of 

method and experimental set-up. Section 4 deals with the results and is followed by 

Conclusions. 

 

2.  OBJECTIVES 

Based on previous section, the main objectives of this study are:  

1) to present an innovative SHM method, specially designed for road pavements, 

which is based on signal analysis.  

2) to carry out a prototypical validation of the method, dealing with controlled 

impulses. 

 

3.  METHOD AND EXPERIMENTAL SET UP 

In this study, a cheap, simple, and NDT method for detecting underneath cracks and 

allowing an intelligent road monitoring is presented. This method (see Figure 1) is 

innovative and considers: 1) waves originated by mechanical sources (e.g., the vehicular 

traffic); 2) the road pavement as a “filter” of waves (i.e., vibrations and sounds); 3) waves 

gathered using a proper receiver (i.e., a probe that acts as a stethoscope).  Any variation 

of the responses cited above is associated to a variation of the filter. 4) Consequently, any 

variation of this particular filter (e.g., due to the occurrence, or the propagation of 

concealed distresses) may be used to identify the structural health status variations of road 

pavements. Based in the above, the proposed method consists of the following steps: 

Step 1: The probe (a microphone isolated from the air-borne noise) is installed (NDT). 

Step 2: The acoustic responses of the pavement (sounds) are recorded. 

Step 3: The acoustic data gathered during the previous step are properly processed. 

Step 4: The features extracted are analysed over (hierarchical clustering, HC). 



 
Figure 1. Schematic of the method. 

 

Authors carried out full-scale experiments. In more detail: i) the temperatures of air 

and road surface were measured; ii) different structural health statuses (SHSs) were 

induced (drilled holes); iii) a broad-band omnidirectional microphone (see Figure 2), 

equipped with an external sound card, was used as a probe to gather the acoustic responses 

of the pavement in each SHS. The probe was attached on the road pavement using 

modelling clay and was covered with a cover with an high sound absorbing coefficient 

(in order to isolate the probe from the air-born noise, and minimize the disturbances due 

to the wind); iv) a Light Weight Deflectometer (LWD; Model: PRIMA100, produced by 

Grontmij, Carl Bro A/S, Pavement Consultants, Denmark; see Figure 2), and a car were 

used as sources to generate loads and  waves; v) a laptop running Matlab was used to 

record, process, and analyse the acoustic data gathered during the experiments. Note that 

this paper refers on the measurements carried out using the LWD as a source only. 

 

 
 (a) (b) (c) 

 

Figure 2. Experimental set up using the LWD as source: different structural health 

statuses (SHSs) of the road pavement under test, which was damaged with: (a) 1 line of 

drilled holes (=SHS1), (b) 2 lines of holes (=SHS2), and 3 lines of holes (=SHS3). 

 

It is important to underline that, the LWD is a device primarily used to evaluate the 

dynamic modulus of pavements (usually unbound layers) according to the standard 

ASTM E 2583-07 [30]. Usually, during the  test carried out using the most common 

LWDs [31], the pavement is loaded with an impulse (i.e., maximum applied force = 7-20 

kN, total load pulse = 15-30 ms, plate diameter = 100-300 mm, pressure about 100 kPa) 

generated by a fixed mass (i.e., 2-15 kg), dropped from a fixed height (i.e., 60-85 cm). 

The mechanical energy is transferred from the mass to the pavement (the measurement 

depth is 1-1.5 times the LWD plate diameter; cf. [32]) through a damping system, which 

causes a controlled transient load in the interface plate-pavement. The resulting road 
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surface deflection in the interface pavement-plate is detected by one accelerometer 

located into the LWD base. Forces and deflections are used to derive the stiffness, also 

called modulus or dynamic modulus, of the underneath pavement layers (about 2 times 

the diameter of the base plate [33]).  

During the experimental investigation, it has been noticed that the metallic plate of the 

LWD often generates undesirable sound components, which, in case of unsatisfactory 

insulation of the microphone, might worsen SHS classification. To solve this problem, 

different systems were tested to set up a proper coupling between the metallic plate and 

the road surface. Good results were obtained using thin layers of modelling clay, rubber 

mats, or cloth disc.  

The first set of 50 Acoustic Responses (ARs) of the pavement that were recorded during 

the experimental investigation, refers to SHS0, i.e., to the road pavement without drilled 

holes. The signals were recorded running a simple Matlab code and using a sampling 

frequency of 192 kilo Samples/second. As is well known, the main effects of the vehicles 

wheels (especially of the heavy ones) on a road lane can be localized, into the wheel paths 

[27,34]. Overall, it is possible to assume that the change of the SHS of the road pavement 

is likely to be assessed by referring to the wheel path volumes (deep layers), i.e., where it 

is more probable to detect concealed cracks. Consequently, in order to simulate the 

presence of cracks along the wheel paths, three lines of holes were drilled between the 

source (wheel paths) and the receiver (i.e., half of the distance LWD-microphone, herein 

called dSR). In more detail, 43 holes were drilled as follows (see Figure 2): i) the first 

line of 15 holes was drilled at half of the distance dSR; ii) the second line of 14 holes was 

drilled between the first line of holes and the microphone, in such a way to obtain 

distances among the holes of approximately 5 cm (i.e., a group of three neighbour holes 

forms an equilateral triangle); iii) the third line of 14 holes was drilled between the LWD 

and the first line of holes. Each hole has a diameter of 10 mm, and a height equal to the 

thickness of the asphalt concrete layers of the pavement (i.e., 15 cm). The 43 holes were 

made with a distance of 5 cm from each other. After the creation of each of the 43 holes, 

50 loads were generated with the LWD and the related 50 ARs of the pavement were 

recorded. At the end of the experiment, 2200 ARs were collected.  

Figure 3 illustrates typical signals in time domain for a LWD (Figure 3a) and for a car 

(Figure 3b). As abovementioned, the study presented in this paper mainly refers to the 

prototypical validation of the method under controlled conditions. Consequently, only 

LWD signals are discussed below and used in the subsequent SHS classification.  

 

     
 (a) (b) 

 

Figure 3. Examples of the Acoustic Responses (ARs) of the road pavement under test 

to loads generated by: (a) LWD; and (b) a car pass-by. 

 



Preliminary analyses showed that the acoustic signals were too complex and large to 

use without preliminary processing. In order to carry out a comprehensive analysis, the 

features were extracted from the time, the frequency, and time-frequency domain. Several 

features were taken into account considering the shape and the main characteristics of the 

Acoustic Responses (ARs) of the pavement under test (time domain), and their processing 

(i.e. periodogram and scalogram in frequency and time-frequency domains, respectively). 

Among all the possible features, we selected the best three ones for each domain, which 

are listed in Table 1.  

  

Table 1. Features that were taken into account in this study to represent the acoustic 

responses of the road pavement under test to the LWD load. 

Symbol Feature 
Unit of 

measure 

Domain / 

Feature Source 

1. Δa Amplitude difference between the absolute 

maximum P and the absolute minimum N of the 

AR amplitudes. 

a.u. 

Time / Signal 

 2. Δt Time Delay of N from P Ms 

3. σ Standard deviation of the ARs. a.u. 

4. PSDmin Minimum of the PSD of the ARs into the 

frequency range 50-150 Hz. 

dBW/Hz 

Frequency / 

Periodogram 

 

5. S Slope of the linear regression model of the PSD 

of the ARs into the frequency range 20-250 Hz. 

Hz 

6. fc Spectral Centroid of the Periodogram  (PSD vs. 

frequency) in the frequency range 20-450 Hz. 

Hz 

7. EntCWCs Maximum Entropy of the CWCs. a.u. 

 

Time-Frequency / 

CWT Scalogram 

8. p-fWR Pseudo-frequency of the WR (from the y-axis of 

the scalogram). 

Hz 

9. EngCWCs,max Energy of the CWCs above a given threshold 

(60 out of 64, i.e. red areas of the Scalogram). 

a.u. 

Symbols. AR = Acoustic Response; a.u. = arbitrary unit; dim. = dimensionless; 

ms = milliseconds; dB = decibel; dBW/Hz = decibel Watt per Hertz; Hz = Hertz; s = seconds; 

Ent = Entropy; CWCs = Continuous Wavelet Coefficients; p-f = pseudo-frequency; 

WR = Wavelet Ridges; Eng = Energy; max =maximum; min = minimum. 

 

Figure 4 refers to two out of the three features extracted in time domain. 

 

 
Figure 4. Graphical representation of two features extracted in the time domain. 
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In order to derive the three features in the frequency domain, the periodogram (Power 

Spectral Density versus Frequency; see Figure 5) of each AR was obtained using the 

following equation [35]:  

 
FsN

FFT
PSD




2

2  , (1) 

where FFT is the Fast Fourier Transform of the selected response; N is the length of the 

selected response (samples); Fs is the sample frequency used to record the signals (Hz). 

PSD is the power of the AR per unit of frequency, i.e., Watt per Hertz or dBW/Hz if the 

decibel scale is used to represent the PSD. In this study, in the pursuit of better analysing 

the PSD of the ARs of the pavement under investigation, the logarithmic scale for the y-

axis (dBW/Hz) was used and values between -100 and 0 (y-axis) and in the range 25-450 

(x-axis) were considered (Fig. 4). Furthermore, the periodogram in Fig. 4 shows: i) the 

section of the periodogram where the local minima of PSD were calculated (i.e., the 

feature herein called PSDmin); ii) an example of linear regression line of the PSD into 

the frequency range 20-250 Hz and its slope (i.e., the feature herein called S, cf. Table 1); 

iii) the spectral centroids of the periodogram (i.e., the feature herein called fc, which is 

represented by a triangle). From the periodogram, the spectral centroid (“centre of mass” 

of the periodogram, cf. [36]) was derived using the following expression: 
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where fc is the spectral centroid (Hz); N is the number of signal samples included in the 

frequency range in which the spectral centroid is calculated (samples); pn represents the 

weights (e.g. decibel Watt per Hz or dBW/Hz), i.e., the values on the y-axis of the 

periodogram; fn refers to the frequencies (Hz; x-axis of the periodogram).   

 

 
 

Figure 5. Graphical representation of the features used in the frequency domain. 

 

Wavelet transforms resulted to be the most suitable method to see signal changes 
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other “too much artificial” tools; ii) particularly suitable for the recognition and  the 

monitoring of non-stationary phenomena or of signals with short-lived transient 

components (which are the combination of transient high frequency components - visible 

at the top of the scalogram - and long lasting low frequency components - shown at the 

bottom of the scalogram as a continuous magnitude; [37]). For these reasons, the WT 

were used in this study. In particular, the Continuous Wavelet Transform (CWT) was 

preferred to the Discrete Wavelet Transform (DWT) because of the fact it allows more 

detailed analysis than the DWT. The results of the application of the CWT (Equation 3) 

is a matrix that contain the Continuous Wavelet Coefficients (CWCs), which are the result 

of the convolution between the signal to be analysed and a variable-sized window 

functions called Wavelet (or mother wavelet; cf. [37]). A typical 2-D graphical 

representation of the CWCs in the time-frequency domain is the “scalogram” (see Figure 

6). It shows the scaled percentage of energy of the wavelet coefficients (different colours 

or intensity variation of a colour) with respect to time, or shift (x-axis), and scale variables 

(y-axis) [17].  

     dt
a
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ψtx

a
baCWT 
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where a is the scaling parameter (a vector with positive elements, which allows 

contracting the mother wavelet ψ [38]); b is the shifting parameter, which permits the 

translation of the mother wavelet ψ along the x-axis (time); x(t) is the signal to be 

transformed; t stands for time (seconds); ψ* is the complex conjugate of ψ. Usually, 

scalograms show on the y-axis the scaling parameter, a. However, in this work, a pseudo-

frequency was derived from the scaling parameter using the following expression [39]: 

 ,S
c
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a
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where Fa is the pseudo-frequency (Hz) corresponding to the scale factor a 

(dimensionless); Fc is the central frequency of the mother wavelet ψ used (Hz); FS is the 

sampling frequency (Hz). In this study, the mother wavelet “meyr” was used in the CWT. 

 

 
 

Figure 6. Graphical representation of two features used in the time-frequency domain. 
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The features extracted in the time-frequency domain were derived from the scalograms 

and from the CWCs as follows. The Shannon’s Entropy of the CWCs (herein called 

EntCWC) per each scale factor a was calculated using the following expression [40]: 

   i

N

i
iCWC ppaEnt  

1
2log , with 

 

 aEng

iaCWC
pi

2
,

 , (5) 

where N is the length of each AR, and pi is the energy probability distribution of the 

CWCs, for i = 1, 2, …, N. The term EngCWC(a) represents the Energy of the CWCs per 

each scale factor a. In more detail [40], the variable EngCWC(a) can be calculated from the 

CWCs, for b = 1, 2, …, N (with N equal to the length of each AR), using the following 

expression: 

    
b

CWC baCWCaEng .,
2

 (6) 

Finally, the validation of the method proposed in this study is based on the 

experimental investigation described above and on the following procedure that aims at 

carrying out the hierarchical clustering of the acoustic responses (ARs) of the road 

pavement and the relative features presented above. In particular, this procedure consists 

in: i) computing the distance matrix, which contains the Euclidean distances between 

pairs of observations (i.e., samples of each AR or values of each features) [41]; ii) 

encoding a tree of hierarchical clusters (i.e., a matrix with cluster indices and linkage 

distances between pairs of clusters) using as input the distance matrix calculated in the 

first step, counting the highest distance between two element of the distance matrix, and 

considering 4 clusters, i.e., one for the structural health condition un-cracked, and the 

other three for the structural health status (SHS) cracked with one, two, and three lines of 

holes drilled into the road pavement under investigation; iii) finding the smallest height 

at which a horizontal cut through the agglomerative hierarchical cluster tree (generated 

in the previous step) groups the observations into 4 clusters; iv) generating the confusion 

matrix (i.e., a matrix that shows how many observations were associated to each cluster) 

and verifying if the ARs associated to a given SHS is correctly clustered and associated 

to a single cluster. 

 

4.  RESULTS AND DISCUSSIONS  

Results are given in Tables 2-3. Table 2 contains the values of the features extracted 

in the three domains of analysis (time, frequency, and time-frequency). It shows how the 

abovementioned features change when the Structural Health Status (SHS) of the road 

pavement gets worse, i.e., moves from SHS0 (un-cracked pavement) to SHS3 (road 

pavement cracked with 3 lines of holes).  

 

Table 2. Values of all the features used in this study.  

Symbol SHS0 SHS1 SHS2 SHS3 
Symbols. SHSi = i-th Structural 

Health Status of the road pavement 

under test, with i=0, ..., 3; 

a.u. = arbitrary unit; dim. = 

dimensionless; ms = milliseconds; 

dB = decibel; dBW/Hz = decibel 

Watt per Hertz; Hz = Hertz; Ent = 

Entropy; CWCs = Continuous 

Wavelet Coefficients; p-f = pseudo-

Δa [a.u.] 1.34 1.44 1.35 1.28 

Δt [ms] 1.86 1.81 1.72 1.70 

σ [a.u.] 13.21% 13.91% 13.32% 12.55% 

PSDmin [dBW/Hz] -51.6 -52.6 -54.9 -55.6 

S [dBW] 0.132 0.134 0.130 0.127 

fc [Hz] 239 242 250 254 

EntCWCs [a.u.] 11.54 11.76 11.90 11.93 



p-fWR [Hz] 262 280 284 287 frequency; WR = Wavelet Ridges; 

Eng = Energy; max =maximum; 

min = minimum. EngCWCs,max [a.u.] 2.61% 1.97% 1.88% 2.14% 

 

Based on Table 2, the following observations can be made: i) The presence and the 

increase of the number of cracks into the road pavement seems to lead to a dissipation of 

the energy of the sound and of the seismic waves traveling from the source, through the 

road pavement, to the receiver. This dissipation is caused by the complex interactions 

(adsorption, reflection and diffraction) between the mechanical waves and the drilled 

holes. This statement was derived observing the reduction of the features Δa, σ, and 

EngCWCs,max, and the increase of the Shannon’s Entropy of the CWCs (which represents 

the increase of the chaos of the system); ii) From a spectral point of view, the dissipation 

of the energy discussed above can be seen as a reduction of some spectral components in 

the low frequency region, which leads to an increase of the influence of the high 

frequency belonging to the same region. These conclusions were derived by analysing 

the trends of the features Δt, PSDmin, S, fc and EngCWCs,max. 

Despite the considerations reported above, it seems quite difficult to validate the 

proposed method, i.e., to demonstrate that it is possible to recognize the variation of the 

SHS of the road pavement using only the trends of the feature extracted. For this reason, 

the hierarchical clustering procedure defined above was used. Confusion matrixes were 

used to express the results of the clustering procedure. As is well-known, the instances in 

a predicted class are represented in each row of the confusion matrix, while the instances 

in an actual class are reported in each column of the matrix (or vice versa; cf. [42]). Form 

these matrixes, the model accuracy (i.e., the ratio between the number of features 

corresponding to a given SHS correctly classified and the total number of features to be 

associated to the above-mentioned SHS) were derived and used to evaluate the results of 

the classification.  

 

Table 3. Results of the hierarchical clustering (HC) procedure.  

Features used as an input of the HC algorithm 
Number of 

features used 

Model 

accuracy 

(%) 

All the features in the time domain (T) 3 m.c.(*) 

All the features in the frequency domain (F) 3 63% 

All the features in the time-frequency domain (TF) 3 m.c 

T+F 6 m.c 

F+FT 6 m.c 

T+FT 6 m.c 

T+F+TF 9 m.c 

Feature # 2 1 72% 

Feature # 2, and 9 2 84% 

Feature # 2, 3, and 9 3 80% 

Feature # 2, 3, 5, and 9 4 78% 

Feature # 2, 3, 5, 6, and 9 5 67% 

Feature # 1, 2, 5, 6, 8, and 9  

Feature # 1, 2, 3, 6, 8, and 9  

Feature # 1, 2, 3, 5, 6, and 8  

6 66% 

Feature # 1, 2, 4, 5, 7, and 9 6 71% 

Feature # 1, 2, 3, 5, 6, 8, and 9 7 66% 

(*) m.c.: misclassification 

 



Based on Table 3, it is possible to state the relationship between AR (through the 

indicators shown in Table 1) and SHS (unknown). For example, when features 2 and 9 in 

Table 1 (i.e., time lag and energy) were used, 84 cases out of 100 cases were correctly 

classified (best set of features: Δt & EngCWCs,max).  

 

5.  CONCLUSIONS 

A non-destructive, acoustic, feature-based SHM method was presented in this paper. 

The validation of the proposed method was carried out through a specifically designed 

experimental investigation. In particular, the proposed method was applied to an asphalt 

concrete pavement and a change of its structural health status over time was simulated 

(generation and propagation of cracks): i) three lines of drilled holes were created into the 

pavement under test to simulate the cracks that usually are generated by vehicular traffic 

along the wheel paths; ii) a Light Weight Deflectometer (LWD) was used as “pilot-

source” to load the pavement; iii) the acoustic responses (acoustic signals) of the 

pavement to the load were detected by an insulated microphone; iv) the signals were 

analysed through different graphical representations obtained using different 

mathematical tools in three domains (i.e., time, frequency, and time-frequency domains); 

v) different features were extracted and analysed, using a hierarchical clustering 

procedure and confusion matrixes, in order to understand which feature is the most 

meaningful in recognizing the presence and the growth over time of cracks in the 

monitored structure. Results show that it is possible to identify and quantify cracks into 

asphalt concrete road pavement using the proposed acoustic response and feature-based 

SHM method. Future research will focus on the improvement of the proposed method in 

terms of measurement system, signal analysis, in the pursuit of classifying different types 

of road pavements and structures based on their acoustic response.  
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