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ABSTRACT 
Classical wave-based acoustic simulation are usually conducted under the 
assumption that the parameters are deterministic. While in real engineering, 
uncertainties on environmental parameters are often unavoidable. Thus, the 
uncertain acoustical simulation has gradually been a research focus. Because of the 
effectiveness and simplicity, the interval perturbation method has attracted 
sustained attentions and been used in many uncertain acoustic problems in recent 
years. However, the commonly used first order approximation in the perturbation 
method would no longer be a feasible strategy due to omitting the high orders of 
the Taylor series when the uncertain parameters are nonlinear. To solve the 
uncertain problems with nonlinear interval parameters, a parameter mapping 
technique is proposed in this paper. This technique firstly constructs a function 
with respect to a nonlinear parameter. Then, by mapping the initial interval of the 
nonlinear parameter into the newly constructed function space, this function can 
be considered as a new independent parameter. Finally, the uncertain acoustical 
problems can be solved by the classical interval perturbation methods in which the 
first order approximation is capable of giving precise results. The numerical 
verifications demonstrate that the proposed technique is effective for uncertain 
acoustic field simulation with nonlinear interval parameters. 
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1. INTRODUCTION 

The small enclosure, for example, the cabin of an airplane, is a type of environment 
in people’s daily life that usually requires high sound quality and low noise level. 
Prediction on the acoustic behaviour inside the small enclosure has been a basic step in 
the design of such space. The wave-based method are widely for solving low-frequency 
acoustic field. Classical wave-based acoustic simulation has been conducted under the 
assumption that the environmental parameters and boundary conditions are 
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deterministic.1 However, in the real engineering, due to the environmental changes, 
physical imperfections and system complexities, uncertainties in environmental 
parameters, material properties, and boundary conditions are unavoidable, which will 
lead to the uncertainty of the acoustic field. The uncertain analysis in the acoustic 
simulation has been a challenging problem and a research focus in recent years.  

Typical uncertain acoustic simulations can be divided into three categories, i.e., 
stochastic analysis, fuzzy analysis and the interval analysis. In the stochastic analysis, 
probabilistic methods are most commonly used methods. This type of method requires 
that the uncertain parameters have known probability density functions. Then, the 
statistical characteristics of the stochastic response can be calculated2-4. The fuzzy 
model is another important type of uncertain analysis method. In this type of method, 
the uncertain parameters are defined as the fuzzy variables with known fuzzy 
membership function. The fuzzy response can be obtained based on the fuzzy 
variables5-7. Essentially, the aforementioned two types of methods both are probabilistic 
methods. Thus, a large amount of information is required to obtain the pre-knowledge 
of the probability density function and the fuzzy membership function of the uncertain 
parameters. Unfortunately, it is too difficult or costly to collect sufficient information 
about the uncertain parameters in the early stage of design. Consequently, the results are 
often unreliable due to the lack of samples8.  

To treat with uncertainties with limited information, an important model, namely the 
interval model, has been becoming increasingly popular in the uncertain analysis. 
Compared with the probabilistic methods, the interval technology just requires the 
variation range of the uncertain parameters as the input information. Thus, it is more 
appropriate for the numerical analysis of non-probabilistic systems without sufficient 
information. To solve a interval problem, the Monte Carlo method (MCM) which 
employs random sampling of the interval parameters to predict the response range is the 
simplest and most robust approach. However, the computational cost of MCM is 
usually too high to be acceptable for large-scale engineering systems, and thus its 
applications are limited. The vertex method is another simple method to solve an 
interval problem. It achieves the exact response intervals by using all possible 
combinations of the interval parameters. In such calculations, the non-deterministic 
problem is transformed into a deterministic one. However, the computational effort of 
this method increases exponentially with an increase in the number of uncertain 
parameters. To obtain better performances for both the computational accuracy and 
efficiency, the interval perturbation method is presented9. In this method, the interval 
system matrices and their inverse matrices are expanded by the Taylor series and the 
Neumann series, respectively. By retaining the first order and neglecting the high order 
terms in the Taylor series, the perturbation analysis can be easily implemented by the 
standard wave-based methods.  

Because of the effectiveness and simplicity, the interval perturbation method has 
attracted sustained attentions and been used in many uncertain acoustic problems in 
recent years10-13. However, it also should be noted that the first order approximation in 
the perturbation method would no longer be a feasible strategy when the uncertain 
parameters are non-linear in the system matrices due the omissions of the high orders of 
the series. To solve the uncertain problems with nonlinear interval parameters, a is 
proposed in this paper. This technique firstly constructs a function with respect to a 
nonlinear parameter. Then, by mapping the initial interval of the nonlinear parameter 
into the newly constructed function space, this function can be considered as a new 
independent parameter. Finally, the uncertain acoustical problems can be solved by the 



classical interval perturbation methods in which the first order approximation is capable 
of giving precise results. 
 

 
2.  BASIC WAVE-BASED ACOUSTIC SIMULATION FOR ENCLOSURE 

Assuming there is a sound source in the enclosure. The mass of the medium provided 
by the source in unit time is 0qρ . The acoustic wave equation with a source is given by  
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where t denotes time, p is the sound pressure, 0c  is the speed of sound in air, 0ρ  is the 
equilibrium density of air, and q is the volume velocity of the sound source.  

Considering the system in the frequency domain, the Helmholtz equation is 
expressed as follows, 
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where k denotes the wave number and is defined by 0/ cω , ω  is the circular frequency, j 
is the imaginary unit, pω  and qω  are the sound pressure and the intensity of the sound 
source in the frequency domain. 

The frequently used boundary conditions in the acoustic field simulation usually can 
be classified into the following two types: 
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where n denotes outward normal direction, sZ  is the specific acoustic impedance of the 
boundary, 1Γ  denotes the damping boundary, and 2Γ  denotes the rigid boundary. 

By dividing the problem domain into discretizing form, the sound pressure at any 
position (for example, r) in the problem domain is expressed by 
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where n is the number of nodes, rN  is the vector of the shape functions for position r, 
and p  is the vector of nodal sound pressures. 

Then, an integral equation to solve the discretizing nodal pressure can be 
simultaneously deduced by Equations 2-4 as follows, 
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In the above equation, ( )( )T dv
Ω
∇ ∇∫K = N N  is defined as the stiffness matrix, 
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= ∫F N as the load matrix. If the sound source is a point source at 0r , the 
intensity of the source can be described as 0 0( ) ( )q q r r rω ω δ= − . By defining 0( )dQ q r vω=  as 
the volume velocity, the load matrix can be written as 
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= − = =∫F N N N , and finally, the system equation can 
be obtained, 
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Finally, the nodal sound pressure and the pressure at the receiving point can be 

obtained. 
 
3.  PERTURBATION METHOD BASED ON THE INTERVAL MAPPING 
TECHNIQUE 

In engineering practice, because of the manufacturing tolerances, environment 
changes or some other unpredictable factors, uncertainties are inevitable. If the 
objective information of uncertain parameter is insufficient to construct probabilistic 
models, the interval model is an alternative non-probabilistic way to describe the 
uncertain parameters when the lower and upper bounds of uncertainties are well defined. 
Assuming there are l uncertain parameters in the problem, an interval vector 

T

1 2, , ,I I I I
lb b b =  b  is introduced to represent the interval uncertainties in this paper, 

and it can be expressed as 
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where b and b  denote the lower and upper bounds of the uncertain parameters, 
respectively, mb  is the mean value vector, I∆b is the deviation interval vector, ∆b is the 
deviation amplitude vector. 

By introducing the interval parameters into the wave-based method, the system 
equation as shown in Equation 6 can be written as  
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where ( ) ( ) ( ) ( )2jI I I Iω ω= + −D b K b C b M b  is the interval dynamic stiffness matrix,

( )IF b  is the interval load vector and I
ωp  is the interval nodal response vector.  

By employing the Taylor series, the interval dynamic stiffness matrix ( )ID b  and the 

interval load vector ( )IF b  can be expanded at the mean value of the random variables, 
and they can be expressed as 
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Equation 9 shows that the Taylor expansions of the dynamic stiffness matrix and the 
interval load have complicated forms. To precisely and efficiently obtain the calculating 
results, conventional wisdom is neglecting the high orders of the Taylor expansions and 
only retaining the first order one. Then, the interval system equation for calculating the 
interval response can be expressed as, 
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where mωp  is the response at the mean values of the uncertain parameters, ω∆p  is the 
perturbation response caused by the interval parameters, mD  and mF  are the system 
matrices at the mean values, ∆D  and ∆F  are the perturbation matrices, and they can be 
expressed as, 
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The first order Taylor expansion in the classical perturbation method is a feasible 
strategy when the uncertain parameters are linear. However, it may suffer a large 
relative error for solving non-linear parameter problem due to the high order 
information loss. In such condition, the interval system matrices in Eq. (10) should be 
expanded into high order Taylor series. Theoretically, if the system equation has n+1 
order derivatives with respect to the uncertain parameter I

ib ，it needs to be expanded 
into at least a n order Taylor series to ensure the results have high accuracy. However, 
calculating with the complete expressions of the Taylor expansions will cause a very 
heavy computational burden. To avoid this problem, a novel parameter mapping 
technique is proposed in this paper.  

Assuming the system function contains a set of non-linear uncertain parameters Ib  
which can be expressed by, 
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where IY is a set of linear variables introduced here to describe the uncertain parameters 
and ( )⋅f  denotes the functionship between IY  and Ib . By considering IY as the new 
uncertain parameters, the system equation is transformed into 
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where the uncertain parameter IY  and its interval can be written as 
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To solve the uncertain response, both the dynamic stiff matrix and the interval load 
vector need to be expanded into Taylor series with respect to the new uncertain 
parameter IY . Since IY is a set of linear variables, the system only has first order 
derivatives with respect to these parameters. Therefore, the first order Taylor 
expansions have been capable of giving sufficient accurate approximations of the 
system matrices. The new expansions of the system matrices can be written as  
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To solve the response in case of Equation 15, the dynamic stiff matrix ( ) 1
m

−+ ∆D D in 
Equation 10 can be expanded by employing the Neumann series 
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Thus, Equation 10 can be expressed by  
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By neglecting the higher-order cross terms, Equation 17 can be rewritten as 
( ) ( ) ( ) ( )1 1 1 1

m m m m m m mω ω
− − − −+ ∆ = + ∆ − ∆p p D F D F D D D F               (18) 

where ( ) 1
m m mω

−=p D F  and ( ) ( ) ( )1 1 1
m m m mω

− − −∆ = ∆ − ∆p D F D D D F .  
     Finally, the interval response can be obtained. 

 
4.  NUMERICAL VERIFICATION 

The accuracy of the proposed method is explored by predicting an uncertain field in 
a cubic cavity as shown in Figure 1. The length, width and height of the cavity are 1.1m, 
1.2m and 1m, respectively. The specific acoustic impedance of the inner surfaces of the 
cavity is set to be 16600. A bottom corner is considered to be the origin of the 
coordinate system. There is a point source at coordinate of (0.1, 0.2, 0.3)m. The receiver 
locates at (0.8, 0.6, 0.9)m.  

 

Figure 1 The cubic cavity  

By considering that the environmental temperature changes in an interval, the speed 
of sound can be treated as interval parameters. Here we assume that the speed of sound 
changes from 309m/s to 359m/s. 
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The bounds of the frequency response at the receiver from 100Hz to 300Hz are 
calculated using the proposed method and the classical perturbation method. Reference 
results are obtained using the vertex method. All the methods involved in this paper are 
implemented under the framework of meshless method14, 15. The fluid domain in the 
cavity is divided into 729 nodes. The comparisons of the upper bound and lower bound 
are illustrated in Figure 2 and Figure 3. 

 

Figure 2 Results of different methods for upper bound of the freqeuncy response 

 

Figure 3 Results of different methods for lower bound of the freqeuncy response 

Figure 2 and Figure 3 illustrate that the classical perturbation method fail to exactly 
predict the upper bound and the lower bound of the frequency responses when the speed 
of sound are uncertain. However, the proposed method gives very close results with the 
reference results. The comparisons demonstrate that the classical perturbation method 
cannot give correct results for problems with nonlinear interval parameters, while the 
proposed method is capable of giving correct results with very simple processing to the 
uncertain parameters.  
 
4.  CONCLUSIONS 

To solve the uncertain problems with nonlinear interval parameters, a parameter 
mapping technique is proposed in this paper. This technique firstly constructs a function 
with respect to a nonlinear parameter. Then, by mapping the initial interval of the 
nonlinear parameter into the newly constructed function space, this function can be 
considered as a new independent parameter. Finally, the uncertain acoustical problems 
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can be solved by the classical interval perturbation methods in which the first order 
approximation is capable of giving precise results. The numerical verifications 
demonstrate that the proposed technique is effective for uncertain acoustic field 
simulation with nonlinear interval parameters. 
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