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ABSTRACT 
This paper presents results of recent work on automatic techniques for optimizing 
parameters in acoustic noise emission control devices based on a dynamics 
compressor model. First, the dynamics compressor is presented as an acoustic noise 
adequation system. The main concerns about how the dynamics compression 
algorithm is applied to an audio line are discussed in detail, seeking for the emitted 
noise level to be kept below acoustic healthy criterion. After the discussion, relying 
on the referred models, the fundamental configurable parameters of these audio 
processing topologies are described. Likewise, and considering the noise controlling 
purposes, quality score functions are defined in order to compare the performance 
of a certain topology using different configurations. These score functions consider 
both emission noise criterions and audio line quality degradation. Thereafter, so as 
to achieving a compromise solution between audio quality and noise level, the 
optimizable variable space provided by the audio dynamics compressor —in its 
noise limiting configuration— is treated using different machine learning techniques 
and automatic optimization procedures, i.e. genetic algorithms. Finally, the results 
show these approaches using automatic parametrization techniques, while 
conclusions include core challenges in order to optimize the quality of processed 
audio signal while keeping noise levels below governmental regulation thresholds. 
 
Keywords: noise control algorithms, automatic parametrization, signal processing 
I-INCE Classification of Subject Number: 38 

 
1. INTRODUCTION 
 

Audio line signal processing has been increasingly relevant in acoustic noise 
control systems. These systems combines analog and digital signal processors in order to 
adjust the emitted acoustic noise levels within healthy thresholds [1]. Signal processing 
of the signal involves a high performance software running in dedicated hardware that is 
able to ensure real-time signal processing and healthy acoustical noise emissions [2].  
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These acoustic noise limiting algorithms could be implemented using several 
approaches [3], but certainly one of the most significant ones is the use of a tuned 
dynamics compressor. This paper presents a set of tools and ideas in order to 
automatically precalculate best configuration parameters of an acoustic noise limiter 
based on the dynamics compressor model.  

Noise limiting dynamic compressor scoring models from the literature are used in 
order to achieve this purpose. The main scope of this scoring procedures is to evaluate 
audio quality and acoustical healthiness. Hence, this paper differentiates three different 
algorithms groups: 

- The acoustical noise limiting algorithm: represents the software running in the 
audio processing noise limiter. In this case, it is always a modified version of a dynamics 
compressor configured with certain parameters. 

- The scoring algorithm: represents a theoretical framework where different 
configurations of the acoustical noise limiting algorithm can be compared. It returns a 
unique and comparable score that can be minimized that takes into account resulting 
sound quality and acoustical healthiness criterions. 

- The optimization algorithm: the key point of this document. This algorithm 
uses the scoring algorithm in order to obtain the best configuration parameters for the 
acoustic noise limiting algorithm. 
 
2. THE DYNAMICS COMPRESSOR AS NOISE LIMITER 
 
2.1 Dynamics compressor operation and parameters 
 As it has been said previously, dynamics compressors are one of the most used 
approaches in order to control the acoustic noise levels of and audio chain. These sorts of 
acoustical noise limiting algorithm maintain a signal below a preset threshold.  

It is clear that, if a digital or analog algorithm maintains the amplitude of a signal 
below some threshold, the acoustical pressure signal generated by the loudspeaker 
transduction will also be bounded to a limit (ideally a limit that keeps a linear and direct 
relation with the dynamics compression algorithm thresholds). 

The dynamics compressor applies a variable gain to the signal in order to adequate 
it to the configured threshold. It also takes into account two timing parameters: the attack 
and release times. Both of them describe how fast the gain value changes once the input 
signal has overcome the threshold [4]. 

This way, a dynamic compressor acting as acoustic noise limiter expects to have 
3-tupla input configuration parameters and an audio input signal. When the audio signal 
amplitude is below the configured threshold, the dynamics compressor generates an 
output audio signal identical to the input one. Once the threshold is overcome, it starts to 
apply a negative gain in order to maintain the amplitude below the threshold.  This gain 
may not be applied instantaneously, so the attack time indicates how long it takes to apply 
the mentioned gain. Eventually, the input signal may drop below the threshold again. In 
such case, the release time indicates how long it takes to push off the applied (negative) 
gain. 

One more parameter can be configured in a dynamics compressor: the gain-ratio. 
It indicates how much gain is applied to the output once the input has overcome the 
threshold. This parameter is not relevant in the present document and it is assumed to be 
∞:1 for all the exposed cases. 

Figure 1 shows how the dynamics compressor and limiters behave on the output 
levels depending on signal input levels. 

 



 

 
Figure 1. Dynamics compressor input to output diagram 

and gain point mobility depending on attack and release times. 
 

2.2 Common Topologies    
The mentioned acoustical noise limiting algorithms based on the dynamics 

compressor need a certain topology in order to actually control the acoustic pressure. 
The most common topology, exposed in Figure 2, relies on an audio chain where 

the noise controlling device is placed just before the power amplifiers and the 
loudspeakers system. The audio source and the optional audio effects (AFX) and 
equalization (EQ) must be placed before the acoustical noise controlling device. 

This way, it can be guaranteed that the audio signal levels after the controlling 
device are adequate and will produce a bounded acoustical noise emission. 

Beyond this audio chain, it is recommended to acquire the actual acoustical signal 
from the place where the audio chain is performing and from a sensitive surrounding 
location. Both signals must come from a calibrated acoustical sensor. These acoustical 
sensors must provide the noise limiting algorithm with an accurate reference of how much 
noise there is in the analysed places. Taking into account the information retrieved, the 
acoustical noise limiting algorithm may act over the input signal in order to adequate it. 

It is relevant to note that the algorithm can also act detached from these sensors 
relaying on a previous digital or electrical calibration against acoustic pressure. The 
authors explain this possibility extensively in [3]. 

 

 
 
Figure 2. Audio chain with acoustic noise limiting architecture and active and passive 

acoustic noise sensors. 
 
 



3. ALGORITHMS SCORING FRAMEWORK 
 

 In order to evaluate the performance of the acoustical noise limiting algorithm 
shown in the previous section, a scoring or evaluation algorithm from the literature is 
used [5] with some modifications. These mechanisms rely on a theoretical background 
that involves two mains considerations: 

1. The modification and degradation of the audio signal. This component takes 
into account the non-linearities and the spectral distortions of the output signal 
with regard to the input signal. 

2. The annoyance generated by the audio chain in sensitive surrounding locations 
(such as private dwellings, hospitals or conference rooms) and the healthiness 
of the acoustic levels inside the playback room. 

 
3.1 Scores    
 With the purpose of summarizing the used scoring algorithm, two main equations 
are used. The first of them, named Like-Score, represents the first of the considerations 
previously mentioned. As shown in Equation 1, it computes the difference between the 
RMS value of each of the ANSI S1.11 octave bands [6]. These energy differences are 
weighted using A-weight in order to approximate the human earing system sensitivity to 
each of these sections of the acoustic spectrum [7]. 

 
𝐿𝑖𝑘𝑒 − 𝑆𝑐𝑜𝑟𝑒 =  ∑ 𝐴𝑤௕

௕௔௡ௗ௦
௕ୀଵ × (𝑅𝑀𝑆𝑖𝑛௠௘௔௡ −  𝑅𝑀𝑆𝑜𝑢𝑡௠௘௔௡)   (1) 

 
 Equation 3 details the second consideration. It generates a score named NC-score, 
this name makes an explicit reference to the NC curve defined in ANSI S12.2-2008 [8]. 
The NC curves define a maximum noise level for each octave band. If a certain acoustical 
noise analysis of a room keeps below each of these thresholds, it can be said that a certain 
NC curve is satisfied. For sake of example, a NC criterion between NC-25 and NC-35 is 
adequate to private dwellings. 
 Coming back to Equation 3, it computes the RMS energy of each output signal’s 
octave band and compares it to the required NC value (NCb). To take into account the 
most unfavourable case, the acoustical noise in a sensitive surrounding location is used, 
so the received RMS value is estimated using the building transmission coefficient (TXb).  

It is important to point out that this comparison between the received RMS energy 
inside the sensitive location and the required NC curve uses two different magnitudes: 
full-scale decibels (dBFS) and acoustic pressure level in decibels (dBSPL). In such a way, 
a correction or calibration factor between them is used (CFS). 

 
𝑅𝑀𝑆𝑜𝑢𝑡௠௔௫
തതതതതതതതതതതതതതത =  𝑅𝑀𝑆𝑜𝑢𝑡௠௔௫ + 𝑇𝑋௕ + 𝐶ிௌ (2) 

 

𝑁𝐶 − 𝑆𝑐𝑜𝑟𝑒 =  ∑ ቊ
ห𝑒଴.଴ଵ×(ோெௌ௢௨௧೘ೌೣതതതതതതതതതതതതതതതതതതିே஼್) − 1ห  𝑖𝑓 𝑅𝑀𝑆𝑜𝑢𝑡௠௔௫

തതതതതതതതതതതതതതത ≤   𝑁𝐶௕

 (𝑅𝑀𝑆𝑜𝑢𝑡௠௔௫
തതതതതതതതതതതതതതത − 𝑁𝐶௕)଴.ହ        𝑖𝑓 𝑅𝑀𝑆𝑜𝑢𝑡௠௔௫

തതതതതതതതതതതതതതത >   𝑁𝐶௕

௕௔௡ௗ௦
௕ୀଵ     (3) 

  
Once defined both scores, both initial considerations are taken into account. As 

far as both of them present a lower-is-better optimization approach, it could be reasonable 
to use the sum of both to obtain a comparison framework.  

Henceforth, this acoustical noise algorithm comparison framework is treated as an 
optimization space where each 3-tupla parameters (dynamics compressor’s amplitude 
threshold, attack time and release time) score with a certain value. The system 
optimization allows to look for the 3-tupla parameter that performs with less signal 



degradations and accomplishing a NC curve criterion, ensuring in such that manner a 
healthy and not-annoying acoustic level in sensitive surrounding locations. 
 
4. PARAMETERS OPTIMIZATION 
 
4.1 Techniques discussion 

 Given the variable optimization space, some automatic techniques can be 
proposed. Taking into account the scoring system exposed in the previous section, a three 
input and one output function can be defined. The computation of this single output relies 
on the summarized scoring algorithm exposed and can be evaluated in order to minimize 
the score. As it has been said, the minimum value of this output score implies the 
parameters set that impacts less over the signal integrity and takes into account the noise 
generated in the evaluated surrounding location. 
 As can be seen, the exposed scoring algorithm relies on heuristic in order to 
evaluate a parameter set. This way, algorithms such as PSO (Particle Swarm 
Optimization), GA (Greedy Algorithms) or EA (Evolutionary Algorithm) are candidates 
for the task of optimization. All of these techniques implement mechanisms that obtain 
an increasing optimal solution for a certain heuristic. 
 Particle Swarm Optimization is an approximation that allows to solve an 
optimization problem using a set of candidate solutions. Such solutions are displaced 
along the search space by speed and position rules that answer to their position’s heuristic. 
The final scope of these procedures is to make the particles cloud converge towards the 
best possible solutions.  
 A greedy approach to this optimization problem could evaluate the whole 
variables space with a certain resolution and iterate increasing the resolution in areas 
where scores are lower. The main advantage of this method is that the resolution of the 
search is limited due to the nature of the optimization problem. For example, it can be 
easily assumed that a difference of 1 ns between two values of attack or release time is 
not relevant. 
 However, the authors found in Evolutionary Algorithm an interesting 
commitment between greedy lookup and swarm optimization. These kind of algorithm 
moves evaluations points around the best-found heuristics, but they also mix these 
resulting best heuristics in order to find best solutions. These mixings or mutations, as 
named in the literature, imply crossing input values of different evaluated points and 
applying random changes to the input values.  
 
4.2 Evolutionary algorithms 
 As said in the literature [9], evolutionary algorithms are based on the operation of 
biological evolution. Given a search space and a scoring or fitting function, the algorithm 
generates one first “generation” by randomly selecting sets of inputs. After evaluating 
each “element” of this first generation using the heuristic function, a new “generation” is 
computed. 
 This new “generation” is generated by using “elements” with better scores from 
the previous “generation”. In such that way, the “element” from the first generation with 
the highest score (according to the described heuristic), is added identically to the new 
“generation”. The rest of the elements could be combinations of the last generation’s best-
scored ones, random mutations, or simply new random elements. 
 By the use of this kind of procedures, the heuristic function can be optimized. In 
the current case, the used heuristic is the scoring procedure described in section 3. The 
“elements” of these optimization problem are 3-tuple of threshold, attack and release time 



5.  RESULTS 
 
5.1 Scope of application 
 Let’s assume there is a simulated acoustical noise control system composed of a 
full-spectrum dynamics compressor. This dynamics compressor has a configurable signal 
threshold, attack time and release time. The goal of this noise control system is to 
guarantee a NC-35 (Figure 3a) curve in an adjacent location that has an acoustic isolation 
treatment that accomplishes the attenuation levels exposed in Figure 3b. A calibration 
parameter of 140 dB is assumed as the reference between the digital full scale and the 
acoustic pressure generated by the electroacoustical system. 
 

 
 

Figure 3a (left). ANSI S12.2-2008 NC-35 curve that represents for example the 
recommended acoustic noise emissions in a private dwelling. Figure 3b (right). Sample building 

acoustic isolation levels used for the simulations exposed in this document. 
 
  Given this scenario, an evolutionary approach is implemented in order to select the best 
configuration parameters for a given sample song. This evolutionary algorithm has 20 
elements per generation and 50 generations. The “evolution” process includes:  the 3 best 
elements of the last generation, 4 completely random new elements, 4 elements crafted 
by recombining parameters of the 3 best elements, 4 elements that randomly shift 
parameters of the 3 best elements (by a gaussian function of μ = 1 and σ2 = 0.4) and 5 
elements that combine the mentioned random recombining plus gaussian shift. 
 

 
 

Figure 4. Evolution of the acoustical noise controlled audio chain simulation score 
along the progress of the proposed evolutionary algorithm approach 



Figure 4 shows the evolution of the generation score, defined as the mean score 
of the elements of a generation, and the best generational score, defined as the score 
achieved by the best element of every generation. 
 Taking into consideration the described system, the optimization process results 
in a configuration of 0.36 threshold (digital full scale), 0.83 seconds of attack time and 
1.68 seconds of release time. 
 For the sake of simplification and example, previous simulation was repeated with 
a single modification: fixing the threshold to its estimated optimal value of 0.36. Figure 
5 shows a heatmap graph where the scores distribution can be observed. As in the 
previous results, the combination of an attack time between 0.5 and 1 seconds and a 
release time between 1 and 2 seconds gives the absolute minimum of the score used as 
heuristic. 

 
Figure 5. Heatmap representing the evaluation of the heuristic along the optimization 

space proposed. This simulation fixes the dynamics compressor thresholds to 0.306. Note that 
the black dots represent the evaluation points selected by the evolutionary algorithm and all of 

them tend to approximate to the absolute minimum. 
 

5.1 Genre clustering by dynamics compression parameters 
 In order to validate the explained techniques, the presented optimization 
techniques have been run with the same underlying assumptions for a genre classified 
music database. This database considers 10 different music genres: country, jazz, 
classical, rock, folk, blues, metal, electronic, reggae and rap. 
 With 5 representative songs for each genre, the optimization mechanism has 
evaluated the best configuration for the exposed acoustical noise controlled audio line 
configuration. 
 Table 1 shows how these parameters, despite being slightly different for each 
specific song, present a trend for each genre. This trend seems to be related with 
parameters such as music dynamics, tempo, spectral components or loudness 
compression of the audio mastering, which is highly dependant on each specific music 
production. 



Table 1. Results of optimization algorithms over a genre sample music library. 
 

 
 
As further work, taking into account the previous results and dissertation, song 

depth analysis is proposed before optimization mechanism are applied. That way, 
applying music information retrieval [10] techniques is proposed in order to fine-tune the 
optimization process. This sort of fine-tune processes could include selective limiting of 
the range of the optimization parameters or selecting accurate initial conditions in order 
to force the evolution of the optimization along the best path. 
 
7.  CONCLUSIONS 
 In this study, an acoustical noise optimization is proposed. The main target of this 
optimization is to evaluate the usage of evolutionary algorithms in acoustical noise 
limiting system based on a dynamics compressor model. 
 The document explains theimplementation of the dynamics compressor model so 
it can act as an acoustical noise limiter. Taking into account these implementation 
considerations, a performance scoring system is applied to these configurations. 
 With this scoring or evaluation mechanisms, an optimization problem is defined. 
The minimization of this optimizable space is supposed to produce an optimal 
configuration parameter set for the noise limiting architecture. 
 As a result, a case study of the presented optimization mechanism is evaluated. In 
this case study, the dynamics compressor parametrization space is evaluated using 
evolutionary algorithms, and it is proven that these algorithms can converge to the desired 
heuristic minimums. However, an extension of the proof of concept to a small music 
database shows this automatic parametrization does not have a high correlation with the 
music genre. In this way, music information retrieval techniques are proposed in order to 
fine-tune the optimization algorithms. 
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Genre
Best Score (20 gen. 

@ 20 elem.)
Attack time 

mean
Attack time 

stdev
Release time 

mean
Release time 

stdev

folk 0.664 10.8 s 7.1 s 57.6 s 96.5 s

rap 0.736 11.7 s 7.2 s 50.5 s 81.6 s

jazz 0.765 11.1 s 8.5 s 1.5 s 1.9 s

blues 0.880 12.9 s 6.1 s 111.5 s 128.8 s

rock 0.882 10.5 s 7.3 s 77.2 s 132.3 s

country 0.883 10.3 s 7.3 s 121.1 s 126.1 s

electronic 0.929 9.4 s 8.1 s 43.5 s 84.7 s

metal 0.978 9.2 s 9.1 s 15.3 s 28.3 s

classical 1.083 13. s 7.7 s 27.2 s 30.2 s

reggae 1.122 8.3 s 7.3 s 52.6 s 91.2 s

comercial 1.536 .2 s .4 s 96.8 s 162.5 s
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