
 

 
 Modeling and experimental investigation on the vibration of 
main drive chain in escalator 
 
Xiaolong Ma 
mxl1905@163.com 
Xi Shi 
xishi@sjtu.edu.cn 
Jiaohua Zhang 
zhangjh201609@163.com 
School of Mechanical Engineering, Shanghai Jiao Tong University,  
800 Dong-chuan Road, Shanghai 200240, P. R. China 
 

Abstract 
In this paper, a coupled nonlinear string model was built to analyze the dynamic 
behavior of the main drive chain in escalator. Following, Wavelet-Galerk in 
method was applied to solve the coupled non linear equation. Meanwhile, a testing 
rig was designed to experimentally investigate the vibration of drive chain in 
escalator. The transverse vibration of drive chain was captured with high-speed 
camera under different traction conditions. And then it was quantitative ly 
obtained following an images processing which was put forward according to 
binary and morphological algorithm. Finally, compared with experimental results, 
the validity of the string model and the effects of pre-tension were discussed. 
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1. Introduction 
Chain drives are widely used to transmit power between rotational machine elements, 
where positive driving, high efficiency, and low maintenance cost are 
required[1].Compared to belt drives, chain drives are characterized by the discrete 
nature of the chain links and sprocket teeth, which lead to noise and vibration[2]. 
Therefore, vibration of chain is an important problem that needs to be resolved in design 
and the operation of the chain drives[3]. There are two factors resulting in vibration of 
the chain, which are internal and external stimuli. Periodic torsional loading and 
imbalance in the drive are external sources. Polygonal action and                               
roller-tooth impacts are  external sources[4].Because  the chain, lying on the   sprockets, 



forms a polygon rather than a circle, the ends of the chain experience periodic 

fluctuation of velocities, which is known as polygonal action [5].  

Many experiments have been carried out to investigate the dynamic behavior of 

roller chain drives. In 1995, James [6] used a strain gage mounted on a link side plate 

to determine chain tension during normal operation over a wide range of linear chain 

speeds and preloads. What’s more, Roberto and Yan [7] built a novel mechatronic test 

rig to study the chain lubrication and its effect on the temperature, efficiency and 

vibrations of the motorbike chain transmission. Lenkov et al. [8] have designed the 

experimental installation of a chain drive for investigation of the influence of chain 

tension on the amplitude of forced oscillations. Also there are many experiments to 

measure the impact force of the chain rollers on the sprocket teeth [9-11].   

Under the assumption that the chain span motion decouples from the dynamics 

of sprockets and attached machinery, the studies of roller chain drive dynamics are 

found to border the analysis of axially moving strings [12]. Early in 1957, 

Mahalingam [13] treated the chain as a uniform string to determine the natural 

frequencies. In 1987, Ariartnam and Asokanthan [14] studied the periodic fluctuation 

of power transmitting chains brought about by factors such as polygonal action and 

eccentricity of sprockets by treating the chain as a traveling uniform heavy string. 

Nowadays, Destyl et al. [15] derived and studied a novel model of the coupled 

-symmetric discrete nonlinear Schrödinger equations which described 

parametrically driven chains of the coupled pendula pairs connected to the nearest 

neighbors in the longitudinal and transverse directions. In studies of string and roller 

chain drive dynamics, it is often assumed that polygonal action leads to a parametric 

excitation described by time harmonic variation of span tension or velocity [16]. 

Attempting to solve the coupled vibration problems of axially moving string, 

many researchers have investigated the applications of various mathematical methods 

on it. Generally, employing the Galerkin discretization, the equation of motion is 

reduced to a set of nonlinear ordinary differential equations (ODE) with coupled 

terms. [17-19]. For example, Chen [20] applied the method of multiple scales based 

on the Galerkin discretization to solve the governing equation of transverse nonlinear 

vibration in the parametric resonances. Nowadays, approximation techniques play an 

indispensable role in complementing exact solutions. Wavelets technique represents a 

newly developed powerful mathematical tool, which has been broadly applied to 

solve differential equations. Pernot [21] introduced a wavelet Galerkin method in 

order to obtain transient and periodic solutions of multi-degree-of-freedom dynamical 



systems with time-periodic coefficients. Liu et al. [22] presented an efficient 

wavelet-based algorithm for solving a class of fractional vibration, diffusion and wave 

equations with strong nonlinearities. Likewise, a new wavelet approximation scheme 

of bounded functions based on techniques of boundary extension and Coiflet-type 

wavelet expansion has been developed by Wang [23]. 

In this study, considering transverse and longitudinal vibration, a coupled 

nonlinear string model was built to analyze the dynamic behavior of the main drive 

chain in escalator. The coupled dynamics vibration equation was derived by The 

Hamilton’s principle and solved with the Wavelet-Galerkin method. In next section, a 

new experimental method for detecting dynamic vibration of main drive chain in 

escalator by utilizing image processing technology was developed. Finally, compared 

with experimental results, the validity of the string model, the effects of pre-tension 

and excitation of chain were discussed, which in principle are conductive to the study 

and engineering design of the main drive chain system in escalator. 

 

2. Equation of motion for drive chain 

    It is proposed here the chain can be modeled as a uniform traveling string for the 

purpose of this analysis under the assumption that the chain span motion decouples 

from the dynamics of sprockets and attached machinery. 

2.1 Governing equation of drive chain 

    The schematic of main drive chain system of escalator is shown in Fig.1. The 

main drive chain transmits the power at speed v between driving and driven sprocket. 

 

Fig. 1 schematic of main drive chain system of escalator 

It is proposed here the chain can be modeled as an axially moving string with 

both ends hinged, which is shown in Fig.2. ρ c T E A are, respectively, density per unit 



length, damping coefficient, tension, Young’s modulus and the cross-section area. 

w(x,t) and u(x,t) are longitudinal displacement and transverse displacement at time t 

and axial coordinate x related to coordinates translating at speed v. h(x,t) is the 

excitation. Besides, the origin of the coordinate is set at one end of the string and the 

instantaneous length of the string is l. 

 

Fig. 2 A theoretical model of the string with the longitudinal and transverse vibration 

The kinetic energy of the axially moving string is given by 
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The potential energy is obtained as 
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The displacement strain relation ε is expressed as 
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Using Hamilton’s principle, the governing equations of motion for the axially 

moving string system with longitudinal and transverse motions are derived as 
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The initial conditions and boundary conditions are given   

w(0,t)=w(l,t)=0, w(x,0) =0 

    u(0,t)=u(l,t)=0,  uxx(0,t)=uxx(l,t)=0,  u(x,0) =0           (5) 



Equation (4) is a strong nonlinear differential equation. Following, we should to 

truncate the infinite dimensional partial differential equation (PDE) into a 

finite-dimensional ordinary differential equation. 

2.2 Discretization of the governing equation in Wavelet Galerkin method 

Firstly, some dimensionless variables are introduced as follows: 
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We introduce 𝑢1 =
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 and 𝑤1 =
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 , and according to the wavelet theory [22], 

the dimensionless functions can be approximated through the scaling function series 

as, respectively, 
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To transform Equation (4) into a matrix equation,, by applying the wavelet Galekin 

method, Equation (4) is expressed as: 
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As above, by applying the Wavelet-Galerkin method, without inversion of matrix 

and special solution technique to deal with the nonlinear spatial and temporal 

operators, we can obtain the discretized nonlinear algebraic equations: 
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Where the matrices and vectors are A={alk}, B={bk}, C={clk}, D={dlk}, E={elk}, 

M={mlk}, F={flk},P={plk}, Q={qlk}, U=[u(x1,t), u(x2,t), …, u(x2
m-1

,t),]
T
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    So far, the discretization in space of the governing equation in Equation (4) has 

been fulfilled. It can be seen the wavelet-Galerkin procedure uncoupled the 

complicated spatial and temporal dependences in the original PDEs, results in a set of 

optimally minimized ODEs. Then based on the parameters given by Table 1, 

numerical solutions can be computed by applying the wavelet Galekin method. 

Table 1. The values of the parameters 

l ρ V E A T 

0.66m 5.4kg/m 0.449m/s 2.3Gpa 2 × 10−4𝑚2 - 

3. Experimental design and configuration 

The experiment was carried out by the camera measurement method for the 

transverse vibration of chain. Figure 3 depicts the chain vibration measurement 

system, which consists of a LED light source, a high speed industrial camera, the 

marked object and a computer for image processing. 

 

1.Marks  2. LED  3. High speed camera  4. PC control and record 

Fig.3 Structure of chain vibration measuring equipment 

In the experiment, a series of marks were purposely made at each junction center 

of chain links. During the traction, the positions of those marks were recorded with 



camera and the raw images were processed first with five detailed processes: image 

reading, threshold calculation and binarization, dilation, erosion and opening 

operation. Vibrations of chain could be calculated after image processing. Besides, the 

experiment for camera calibration was performed and the results showed that the 

measurement relative error of displacement was roughly in the range of -2.7%~2.8%. 

 

4. Results and discussion 

4.1Analysis of the validity of the string model 

    There are two traction conditions for escalator: running down and running up. 

Notably, it will need larger traction force for running up than running down under the 

same load. In this section, experiment and numerical simulation have been done to 

investigate the vibration of descending and ascending escalator chain under empty 

load. 

    Firstly, the dynamic analysis of ascending escalator chain under empty load is 

presented. Figure 4 depicts the comparison of transverse vibrations for one-third 

position of the ascending chain between experiment and numerical simulation. 

Notably, the tension of the chain is about 3300N. It can be seen that both of behaviors 

including amplitude and waveform for experiment and numerical simulation are 

comparable. 

 

Fig.4 Comparison of transverse vibrations for one-third position of the ascending chain between 

experiment and numerical simulation 

    Meanwhile, amplitude-frequency characteristics for one-third position of the 

chain between numerical and experimental data have been shown in Figure 5. It can 

be seen the natural frequency is identified as 18.8Hz from experiment while it is 

18.52Hz from numerical simulation. Obviously, the numerical result is in good line 

with the experimental result and the relative deviation is about 1.5%. This confirms 



that the proposed string model performs well in simulating the vibration of ascending 

escalator under empty load. It should be noted that some inconsistencies between 

experimental and numerical results also exist in other frequencies, which may be on 

account of some practical factors, such as environment noise and inexact excitation in 

simulation. 

 

Fig.5 Comparison of frequency characteristics for one-third position of the ascending chain 

between experiment and numerical simulation 

    Following, the dynamic analysis of descending escalator chain under empty load 

is provided. Figure 6 shows the comparison for one-third position of the descending 

chain between experiment and numerical simulation. Notably, the tension of the chain 

is about 10N. Obviously, dynamic behaviors including amplitude, waveform and 

frequency for experiment and numerical simulation are comparable. Namely, the 

proposed string model is not valid for the chain of descending escalator under empty 

load. 

 

Fig.6 Comparison for one-third position of the descending chain between experiment and 

numerical simulation (a) transverse vibrations (b) frequency characteristics 

a) b) 



    In particular, the chain is characterized by the nature of the chain links and 

sprocket teeth. When the tension of the chain is so small, we can’t neglect the 

different mechanical mechanism between the chain links and junctions. Namely, 

continuous model can’t be applied to study chain. That is the reason the proposed 

string model is valid for the ascending chain but failed for the descending chain. 

4.2 The effects of pre-tension 

In this section, the relationship between amplitude, frequency and tension has 

been investigated. As referred above, the proposed string model is valid when the 

tension is large enough, so we studied the transverse vibrations of the string model 

when the tension is larger than 2000N. Figure 7 shows the relationship between 

amplitude, frequency and tension. It can be seen that with the increase of tension, the 

amplitude decreases while the frequency increases. 

 

Fig.7 The relationship between tension and (a) amplitude (b) frequency 

5. Conclusion 

In this paper, a Wavelet-Galerkin method is presented for solving the dynamic 

behavior of the main drive chain in escalator. It can be found the Wavelet-Galerkin 

method makes it possible to avoid numerically calculating integral of 

multifold-products of scaling functions and their derivatives in the string vibration 

equations. Furthermore, the experiment was carried out by the camera measurement 

method for the transverse vibration of chain, whose results were compared with 

numerical results. Based upon these results, the following conclusions are obtained: 

(1) The Wavelet-Galerkin method presented in this paper can be applied to solve 

the coupled nonlinear string vibration equations. 

(2) The proposed string model is valid for the ascending chain but failed for the 

descending chain under low load. 

a) b) 



(3) For the transverse vibrations of the string model in this paper when the 

tension is large, with the increase of tension, the amplitude decreases while the 

frequency increases. 
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