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ABSTRACT 
This paper analyses the influence of kernel function on spatial resolution in the wave 
propagation simulation with smoothed particle hydrodynamic (SPH) method. SPH 
is a kind of Lagrangian meshfree method promoted in acoustic simulations, such as 
combustion noise, bubble acoustics, and sound propagation in multiphase flows. It 
has been investigated in the influence of parameters on the series of numerical 
results by comparison with the exact solution. In this paper, we neglect the particle 
displacement caused by the sound wave, since it is a high order infinitesimal for the 
average particle distance. Fourier transform is used to analyse the spatial resolution 
of the first order derivative discretized by SPH. In this way, a frequency method to 
define the average particle distance and the smoothing length is obtained. With the 
analysis result, a numerical model is used to validate that this frequency method can 
increase the accuracy of the numerical results. 
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1.  INTRODUCTION 

Acoustics has developed into an interdisciplinary field encompassing the disciplines 
of physics, engineering, speech, audiology, music, architecture, psychology, 
neuroscience and others. It is difficult in getting the exact results in the practical 
application of acoustics. Fortunately, as a benefit of the development of computer science, 
it is possible that the believable numerical results can be obtained through computers 
around us. Since the computational acoustics is proposed, some numerical methods and 
mathematic models have been introduced to get the precise numerical results. Up to date, 
the mesh method is the most popular in computational acoustics, such as finite difference 
method (FDM) (1), finite element method (FEM) (2), boundary element method (BEM) 
(3), and some other modified or coupled methods (4). Although these methods have been 
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perfected well, there are some disadvantages in certain situations, such as transient 
acoustics with free surfaces, complex material interfaces, inhomogeneous media, moving 
or deformable boundaries, and multiphase systems. Some specific examples are bubble 
acoustics, combustion noise, sound propagation in multiphase flows. 

The mesh methods calculate the physical variables at fixed locations in space, causing 
some difficult problems of simulating the free surface or deformation exactly. If the nodes 
of the meshes move in space with respect to the velocity, the deformation of the mesh 
shape may cause singular results. Aiming at solving the extreme problems, such as the 
large deformation, the crack propagation, the free surface problems, etc., meshfree 
methods are introduced. The meshfree methods discretize the computational domain into 
particles without meshes. These methods release the requirement of the mesh quality, 
connect the particles in a more simple spatial relation. Thus the meshfree methods have 
potential in solving the extreme problems.  

In consideration of the potential of the meshfree methods, some meshfree methods 
have been implemented in acoustic simulations, as the reproducing kernel particle method 
(RKPM) (5), the element-free Galerkin method (EFGM) (6), the meshless Galerkin least-
square (MGLS) method (7), the method of fundamental solutions (MFS) (8), the 
generalized finite difference (GFD) method (9,10), the smoothed particle hydrodynamics 
(SPH) (11,12) method, the corrected smoothed particle method (CSPM) (13), and some 
other modified or hybrid meshfree methods(14,15). 

The SPH is a Lagrangian meshfree method first introduced by Lucy (11) and 
Monaghan (12) to solve astrophysical problems, and it has been used in different fields. 
This numerical method discretizes the computational domain into mass particles, and the 
particles can move through both space and time with their own physical variables. The 
relations between these particles just depending on the distances between particles, which 
leads to that it needn’t regenerate the mesh to construct the shape function. Thus it doesn’t 
encounter problems of the mesh distortion. With this characteristics, SPH can describe 
the deformation of the computational domain in time domain. In recent years, the 
application of SPH and its modified methods on acoustics has gotten some explorations: 
the acoustic reverberation in room space (16); the influence of the coefficients of SPH 
(17-19), the boundary conditions (20), and the underwater sound generated by fluid-
structure interaction (21). 

However, it is still a challenge to find out the exact value of parameters of SPH in 
practical program. It always depends on the researchers experience or numerical test 
(18,19). In order to get an accurate algorithm to estimate the influence of the particle 
space and smoothing length on the numerical results of wave equations, we use Fourier 
transform to analyse the spatial resolution in frequency domain, which is termed as 
dispersion-relation-preserving scheme in FDM. This method can give out an asymptotic 
curve illustrating the range of particle space with respect to wave number intuitively. 

The present paper is organized as follows. In Section 2, the acoustic wave equations 
in Lagrangian form are given and solved with the standard SPH theory. Section 3 gives 
out the Fourier analysis of spatial resolution in finite difference method. Based on that, 
the Fourier analysis equations of SPH in acoustic wave equations are obtained. Section 4 
analyses the influence of the SPH parameters in the simulation, and Section 5 simulates 
a 2D model of wave propagation in a duct, surrounded by PML boundaries, to validate 
the Fourier method is helpful in setting the parameters. Section 6 summarizes the results 
of this work. 
 
2.  ACOUSTIC EQUATIONS AND SPH DISCRETIZATION 
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2.1 SPH Formulations 
SPH uses particles distributed in computational domain to represent the physical field. 

The properties of the particles associate with the physical variables in the corresponding 
location and time. Based on the concept of Dirac delta function, the variables of particles 
are approximated by summarization of the particles located in the corresponding support 
domain. As shown in Figure 1, the function f  is obtained as 

 ( ) ( ) ( ),f f W h d
Ω

′ ′ ′= −∫r r r r r   (1) 

where  is a symbol representing the SPH integral described as Equation (1). ( )f r  is a 
variable f  at the position r . Ω  is the support domain of the particle located at r . ( )f ′r  
is the variable positioning in the r  particle’s support domain to summarize. W  is termed 
as kernel function with respect to the distance vector ′−r r  and the smoothing length h . 
The particle approximation of Equation (1) can be written as  

 ( ) ( ) ( ),
N

j
i j ij

j j

m
f f W h

ρ
= ⋅∑r r r   (2) 

where ir  and jr  are the positions of ith particle and jth particle. The ith particle 
corresponds to the r  particle to calculate, and the jth particle corresponds to the ′r  
particle. N  is the number of the jth particle in the support domain that is determined by 
kernel function ( ),ijW r h , where ij i j= −r r r  is the particle approximation of the distance 

′−r r ; and jm  and jρ  are the mass and density of particle j , respectively. 

 
Figure 1. The distribution of the kernel function in the discretized domain. 

To obtain the derivative of the function with respect to space, substitute ( )f r  with 
( )f∇ ⋅ r  in Equation (1) and consider ( ), 0ijW h =r  in the boundary of the support domain. 

Thus, the approximation of ( )f∇ ⋅ r  can be represented as 

 ( ) ( )
N

j
i j i ij

j j

m
f f W

ρ
∇ ⋅ = ⋅∇∑r r   (3) 

where ( ) ( )/ /i ij i j ij ij ijW r W r ∇ = − ∂ ∂ r r , ij i jr = −r r , and ijr  is the scalar distance between 

particles i  and j . 

Since SPH was implemented, several types of kernel functions have been introduced 
(22). In this paper, the cubic spline kernel function is chosen to analyse the spatial 
resolution. The kernel function is 
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space respectively. 
 
2.2 Linearized Euler Acoustic Equations 

Linearized Euler equations can control the sound wave in pressure-velocity form to 
model the sound propagating in the isotropic and lossless medium. 

 2
0 0

p c
t

ρ∂
= − ∇ ⋅

∂
u   (5) 

 
0

1 p
t ρ

∂
= − ∇

∂
u   (6) 

 2
0p c ρ=   (7) 

where p  is the sound pressure at time t ; 0ρ  is the quiescent density of the medium; ρ  is 
the density perturbation caused by sound propagation; u  is the particle velocity; and 0c  
is the speed of sound. Discretizing Equation (5) with separating particles in the 
computational domain using Equation (3) yields  
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0 0

1

N
ji

j i ij
j j

mp
c W

t
ρ

ρ=

∂
= − ⋅∇

∂ ∑ u   (8) 

where ip  is the sound pressure associated with particle i , and ju  is the particle velocity 
associated with particle j . To reduce the numerical error caused by discrete particles, the 
particle velocity ju  in Equation (8) is replaced with the relative velocity between particles 
i  and j  via the following. The gradient of the unit can be written as 

 ( )
1

1 1 , 0
N

j
i ij

j j

m
W h d W

ρ=Ω

′ ′∇ = ⋅∇ − = ∇ =∑∫ r r r   (9) 

Substituting 2
0 0 icρ u  in Equation (9) yields 

 2 2
0 0 0 0

1 1
0

N N
j j

i ij i i i ij
j jj j

m m
W c c Wρ ρ

ρ ρ= =

   
= ∇ ⋅ = ⋅∇      
   
∑ ∑u u   (10) 

Inserting the right side of Equation (10) into Equation (8) yields 
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Similarly, the momentum equation discretized in the SPH method is obtained as 

 ( )
10

1 N
ji

i j i ij
j j

m
p p W

t ρ ρ=

∂
= − + ∇

∂ ∑u   (12) 

The state equation in the SPH method is obtained as 
 2

0i ip c ρ=   (13) 
 
3.  FOURIER ANALYSIS OF SPATIAL RESOLUTION 
 
3.1 The dispersion-relation-preserving scheme in FDM  
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Acoustic problems are governed by the Euler equations in this paper. According to 
wave propagation theory, the wave propagation characteristics are all encoded in the 
dispersion relations of the governing equations. Thus one is assured that the numerical 
solutions of a high order SPH will have the same wave propagation characteristics 
(namely, nondispersive, nondissipative, and isotropic) and the same wave speeds as those 
of the solutions of the Euler equations if both systems of equations have the same 
dispersion relations. Tam and Webb (23) have introduced a dispersion-relation-
preserving (DRP) scheme in finite difference method (FDM). In this method, the 
asymptotic solutions of the governing equations found by the use of Fourier-Laplace 
transforms keep the finite difference method having the same dispersion relations as the 
original partial differential equations. 

In order to get the numerical solutions agree well with the exact solutions, we should 
get the relation between numerical wave number and exact wave number. With finite 
difference method, the first derivative /f x∂ ∂  at the ith node can be expressed as  

 1 M

j i j
j Ni

f a f
x x +

=−

∂  ≈ ∂ ∆ 
∑   (14) 

where x  is the distance between adjacent nodes. N−  and M  are the left limit and right limit 
used to interpolation, respectively. ja  is the interpolation coefficient corresponding to the 

variable i jf +  of (i+j)th node. It is proposed that the ja  can be determined by several methods, 

such as Taylor series expansion, central difference method, upwind schemes, etc.. The DRP 
method uses Fourier transform of the right side of Equation (14) to get the interpolation 
coefficients as a close approximation of that of the partial derivative on the left side. 

In the view of discretization, Equation (14) can be expressed as  

 ( ) ( )1 .
M

j
j N

f x a f x j x
x x =−

∂
≈ + ∆

∂ ∆ ∑   (15) 

The Fourier transform of the left and right sides of Equation (15) are 

 .
M

ikj x
j
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x

∆
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≈  

∆ 
∑    (16) 

The left side of Equation (16) can be considered as the Fourier transform of the original partial 
differential equation ( ) /f x x∂ ∂ , so k  is the exact wave number. The right side of Equation (16) 

is the Fourier transform of the approximation equation ( ) /
M

j
j N

a f x j x x
=−

 
+ ∆ ∆ 

 
∑ , thus the 

approximation wave number k  is obtained as  

 
M
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If the interpolation coefficients ja  make sure that the finite difference method has the same 
dispersion relation as the original partial differential equation, the approximation wave number 
k  should be the same as the exact wave number k . k x∆  is a periodic function of k x∆  with 
period 2𝜋𝜋 . To assure that the Fourier transform of the finite difference scheme is a good 
approximation of that of the partial derivative over the range of wave numbers of interest it is 
required that ja  be chosen to minimize the integrated error E  defined 
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The conditions that E  is a minimum are 

 0, ;
j

E j N to M
a
∂

= = −
∂

  (19) 

Provides a system of linear algebraic equations by which the coefficients ja  can be easily 
determined. This method can just be used in central difference method. If N M≠ , it can be shown 
that such an unsymmetric stencil is used over a large region it will generally lead to spatially 
growing wave solutions. The SPH uses the symmetric kernel function to interpolate the particles. 
It has the similar structure as Equation (15) dose, so we can use the DRP method to analyze the 
spatial resolution of the SPH, even to construct a new kernel used in wave propagation problems. 
 
3.2 Analysis of the spatial resolution of SPH with DRP scheme 

Comparison Equation (3) and Equation (15), ( )/j j i ijm W∇ρ  can be considered as the same as 

the interpolation coefficient /ja x∆ . Then submit ( )/j j i ijm W∇ρ  in Equation (17), the asymptotic 
relations between the numerical wave number in SPH and the exact wave number in original first 
order partial differential equation can be obtained. The relations can be expressed as  

 =-
M

j ik xj
i ij

j N j

m
k x i x W e ∆

=−

∆ ∆ ∇∑ ρ
  (20) 

When the cubic spline kernel function ( 1.02h x= ∆  ) is used to calculate the wave propagation, 
Figure 2 shows the k x∆  versus k x∆  relation over the interval 0 to π . For k x∆  up to the 
deviating point 0.372k x∗∆ =  the curve is nearly the same as the straight line k x k x∆ = ∆ . For k x∆  
larger than the deviating point, the curve of numerical wave number k x∆  deviates increasingly 
from the straight line k x k x∆ = ∆ , which means that the dispersion relation between SPH and the 
partial differential equations are different with k x∆ beyond the deviating point.  

 
Figure 2. The asymptotic dispersion relations of SPH with the new fourth-order kernel function.  

 
4.  ANALYSIS OF THE SPATIAL RESOLUTION 
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The spatial resolution has a great effect on the dispersion relation. So to get the appropriate 
spatial resolution is critical. This section will give some discussion about the effect of the SPH 
parameters. 
 
4.1 The effect of particle distance 

The value of deviating point determines the highest wave number can be resolved with the 
certain particle spacing. Often the resolution of spatial discretization is represented by the 
minimum points-per-wavelength needed to reasonably resolve the wave. Here the points-per-
wave-length value will be computed as 2 /k xπ ∗∆ . The value of k x∗∆  affects the stability 
considerations, and the SPH with specific coefficients can resolve the long waves (i.e., for k k∗≤ ) 
with in a given accuracy.  
 
4.2 The influence of smoothing length 

With the fixed particle spacing, the relation of smoothing length versus particle spacing is 
 h q x= ∆ ,  (21) 

where q  determines the number of particles included in one smoothing length, and the radius of 
the support domain is hλ , as shown in Figure 1. With numerical experiments, (24) presents that 
SPH scheme with a support domain containing more particles can give a result with some level 
of local characteristics lost. The conclusion means that the spatial resolution decreases with 
increasing smoothing length. In this section, the spatial resolution of SPH is analyzed by the 
asymptotic curve in frequency domain. Figure 3 illustrates the asymptotic curve of SPH with 
different smoothing length. The deviating point gets close to the origin through the k x k x∆ = ∆  
line. With the same particle spacing, increasing smoothing length means a support domain 
containing more particles. The deviating point moves to the low frequency direction, thus the 
results about high frequency is not accurate. In the consideration of numerical dissipation, the 
high frequency wave is damped or even disappeared, which is the same as the conclusion of (24). 

Figure 4 shows the deviating point curve with respect to q  coefficient. In the whole range of 
smoothing length, there are several peaks, and the peak value decreases with increasing smoothing 
length. Its concept is as the same as that the spatial resolution decrease with increasing smoothing 
length. In the range of [ ]0,0.5q = , there aren’t particles included in the support domain, so SPH 
doesn’t work. In the range of ( ] [ ]0.5,1 1.89,2q = ∪ , there are particles included in the support 
domain, but the deviating point is zero, the spatial resolution can’t be estimated exactly. In the 
rest range of q , the exact spatial resolution can be obtained. Besides, the appropriate smoothing 
length can be obtained to optimize the computational load. 
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Figure 3. The asymptotic curve of the cubic spline kernel function with different smoothing 
length. 

 

 
Figure 4. The deviating curve of cubic spline kernel function versus the smoothing length. 
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5.  THE PLANE WAVE PROPAGATION IN A DUCT 

In this section, a two-dimensional plane wave is simulated. The computational field is 
a two-dimensional duct illustrated as Figure 5. The up and below boundary are hard 
boundaries (20), and the right boundary is set as perfectly matched layer (PML) boundary 
(24) to absorb the plane wave. The incident sound pressure of the plane wave propagating 
from the left boundary to the right boundary is Equation (22).  

 
Figure 5. The computational domain 

 20t x/ c*exp( ( ) )p A
B

−
= −   (22) 

where 0.5A =  Pa is the amplitude of the Gaussian pulse, 0 340c =  m/s is the sound speed 
in the media, 1000B =  controls the pulse width. In this model, the parameters of the media 
are indicated in the Table 1.  
Table 1. Parameters of the two-D model. 
Parameter Units Value 
Particle spacing x∆ , y∆   m 0.03 
Kernel functions W m-2 cubic spline 
Smoothing length h m 1.02 x∆ , 2.02 x∆ , 3.02 x∆ , 

4.02 x∆  
Time step t∆   s 4.4E-5 
Air density 0ρ   kg/m3 1.293 
Sound speed 0c   m/s 340 

According to the peaks in Figure 4, four different smoothing lengths with the same 
particle spacing are investigated to validate the SPH simulations of acoustic waves. We 
chose the data from the central line of the duct to analyse the influence of smoothing 
length.  

The central particle located at the centre of the two-dimensional duct is selected for 
comparison with the exact solutions. Corresponding to the time steps, the sound pressure 
of the selected particle is indicated in Figure 6. With the highest deviating point 1.02h x= ∆  
in Figure 4, numerical results are almost the same as the exact results. Comparing with the 
other smoothing length, the dispersion of the numerical results is preserved best. 
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Figure 6. The sound pressure of the centre of the duct. 

 
6.  CONCLUSIONS 

This paper introduces a frequency domain method to analyse the spatial resolution of SPH. 
This method is derived from the dispersion-resolution-preserving method used in FDM. The 
result of the asymptotic curve can give the exact deviating point k x∗∆ , the spatial resolution can 
be obtained by 2 /π k x∗∆ . Then the curve of deviating points versus smoothing length is obtained. 
The peak of the curve determines the appropriate smoothing length with respect to the wave 
number and particle spacing. A two-dimensional model of plane wave propagating in a duct is 
carried out to validate the influence of the smoothing length. 
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