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ABSTRACT 

Operational Transfer Path Analysis (OTPA) is a widely-used approach in 

engineering to detect the dominant source of vibration or noise by comparing the 

contributions of several pre-defined vibration/noise transfer paths. Because of its 

dependency on the quality of signals, this approach may identify incorrect path 

contributions, particularly when random noise is mixed into the collected data. A 

number of deterministic techniques, e.g. singular value truncation, have been 

proposed to mitigate this problem. However, the performances of these techniques 

rely heavily on careful parameter-tuning. To address this issue, a modified OTPA 

method is presented in this paper which uses support vector regression (SVR) to 

evaluate the inherent uncertainties associated with the path contributions. Apart 

from its data-based, automatic way for parameter definition, the main advantage of 

the proposed method is that it transforms each contribution from a single value to 

an adjustable interval, so that the reliability of the predictions could be measured 

and further examined. The effectiveness of the proposed method is verified against 

traditional OTPA by a simple acoustic emitter-and-receiver numerical example. 
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1. INTRODUCTION 

 Operational Transfer Path Analysis (OTPA), a transmissibility function based 

method, has been proved effective in a range of engineering applications, such as source 

detecting and vibro-acoustic path contribution evaluation [1]. The method is growing 

increasingly popular because instead of using real source data, which is difficult to obtain, 

it only uses data measured in the vicinity of the source and in operational conditions. For 

many NVH problems, OTPA is a preferable choice, since it eliminates the need to 

dismantle the source off the system, a time-consuming but mandatory process for the 

traditional Transfer Path Analysis to get accurate frequency response functions of the 

system. However, as many authors pointed out, OTPA also suffers from several 

limitations: 1) errors from neglected important paths, 2) errors from cross-coupling 

between input signals, 3) errors in the estimation of transmissibility functions [2]. In this 

paper, we propose a support vector regression (SVR)-based OTPA method in which the 

transmissibility functions are simultaneously calculated and regularized based on 

multiple operational data. In particular, the uncertainties of path contributions are 

quantified through cross validation of multiple models. A 95% prediction interval of the 

path contributions is observed in the results given by the new method, which proves its 

higher accuracy than the traditional OTPA method. 

 

2.  OTPA Theory 

 

2.1 Traditional OTPA method  

 In traditional OTPA method, the system under analysis is assumed to be linear 

time-invariant, and the output of the system is the superposition of various inputs from 

different transfer paths as 

 Y XT   (1) 

In the equation Y represents the output (acceleration, force, sound pressure, etc.), X

represents the input (acceleration, force, sound pressure, etc.) and T represents the 

transmissibility function matrix. The equation is frequency depended and for each 

frequency line, the transmissibility function matrix can be written as follows, where the 

subscript ( )opi  represents for the ith  experimental operating condition. 
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It should be noted that the number of experimental operating conditions s  should be no 

less than the number of inputs to ensure reversibility of the input matrix X . The paths 

contribution to the ith  output under the jth  experimental operating condition can be 

calculated as 

 
( ) 1( ) 1 2( ) 2 ( )i opj opj i opj i n opj niy x t x t x t      (3) 

  However, as the input signals are measurements from reference points around the 

real source of the system, some measurement noise and cross-coupling from other sources 

are also inevitably considered into the input signals. That, to a certain degree, causes the 

uncertainty of OTPA. In traditional OTPA method, the input distortion due to noise and 

cross-coupling is solved by cross talk cancellation (CTC), namely using truncated 

singular value decomposition (TSVD) to prevent poor estimates of the transmissibility 

function. The singular value decomposition of the input matrix X  can be expressed as 

 
TX U V    (4) 



U  is an s s  unitary matrix, V  is a n n  unitary matrix and 
TV denotes its conjugate 

transpose.   is an s n  matrix ( s n )  having the form as 
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where the elements on the diagonal are singular values and satisfy 1 2 0n      . 

Generally, larger singular value contains more information of input matrix and small 

singular value contributes little and can be seen as noise. The truncation can be done 

according to the contribution rate (CR) as 
1

( / ) 100%
n

i i

i

CR  


  , (0 )i n  . By 

setting a threshold  , those singular value whose CR   will be rejected. The new 

transmissibility function matrix thus becomes 
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Therefore the paths contribution of input signals under another k experimental 

operational condition can be expressed as 
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2.2 SVR based OTPA method 

 Support vector regression is a machine learning algorithm originally invented by 

Vapnik and his colleagues [3]  and has been largely developed during the past few decades. 

It is useful to recognize subtle patterns in complicated data sets and generalize well to 

unseen data in both linear and non-linear task. In this paper we assume the system is of 

linear property in most time, so we focus on using SVR to solve linear regression problem. 

And the function we estimate does not contain any bias term. For instance, suppose we 

have s  operational data and n  input signals in every frequency line 

1 1 2 2{(x ,y ),(x ,y ),...,(x ,y )} n

s s   . In SVR   our objective is to find a function 

( ) ,f x x    with 
n  that has an up limit of   deviation of the target point iy  for 

all training data, and at the same time as flat as possible, which can be expressed as  
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where ,   represents for dot product in n , C  is a positive constant that determines 

the trade-off between the flatness of f  and the amount up to which deviations larger 

than   are tolerated. ,i i   are slack variables introduced to make the margin “soft” to 

cope with infeasible constraints.  The  -insensitive loss function 


  has been 

described by 
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 In most cases, it turns out that optimization problem (8) can be solved easily in its 

dual formulation (and also provides the key for extending SVR to some nonlinear 

functions) as 
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L  denotes the Lagrangian and (*) (*), , ,i i i i     are non-negative Lagrangian multipliers 

(also called dual variables). It follows from saddle point condition that the partial 

derivatives of L  with respect to the primal variables 
*( , , )    have to vanish for 

optimality. 
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( ) 
 refers to   and  

. Substituting Equation (11) and (12) into (10) yields the dual 

optimization problem. 
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Equation (11) can be rewritten as 
1
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   and therefore we can get the so-

called support vector expansion 
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 Hyper-parameters C  and   play the role of regularization in SVR and after being 

carefully picked, they can largely cancel the distortion of measurement noise as well as 

cross-coupling effect. For the selection of those parameters, detailed investigation has 

been done by Vladimir Cherkassky and Yunqian Ma [4], who proposed to choose 

regularization parameter as  

 max( 3 , 3 )y yC y y      (14) 
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where y  and y  are the mean and standard deviation of the output, respectively.  s  is 

the number of training samples and   is the estimate of noise according to the following 

formula 
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where iy  is the ith  response output and ˆ
iy  is the least-square fitting of the training 

data.  

 Root mean square error (RMSE) is usually used to measure the errors for 

accuracy assessment, which is expressed as 
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3.  A simple numerical case 

 

3.1 Acoustical field with spherically radiating sources 

Source 1 Source 2 Source 3 Source 4

MIC 1
MIC 2 MIC 3 MIC 4

MIC 5

(Response point)

0 1 2 3-2-3 -1

5m

 

Fig. 1  Acoustical field of 4 sources 

 As shown in Fig. 1, an acoustical problem with 4 spherically radiating sources is 

designed to evaluate the performances of the new SVR-based OTPA method in 

comparison with the traditional OTPA method. The positions of sound sources and 

response point (MIC 5) are marked in the figure and the vertical distance between each 

sound source and its nearby microphone is 0.2m while the horizontal distance is 0. The 

radius of the 4 sources is 0.05m ( 0.05a m ). The sound velocity of the sources are 

1 2 3 30 /v v v m s    , 4 15 /v m s . Assume all the sound sources and response point are 

in a free sound field, which the sound pressure ( , )i ip r   can be expressed as 
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where j  denotes the complex angular frequency, 3

0 1.29 /kg m   is the density of 

the air, k
c


  is the wave number. 340 /c m s  is the sound velocity in the air, and ir  

is the distance between source i  and other points in the sound field.  



 The reference point (MIC 1~4) receive not only the sound of its nearby sound 

source but also from other sources even though far away from it, and moreover with 

random noise of the sound field. So the sound pressure for the ith  microphone get is 
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in which ( )noise   is random noise whose amplitude is 0.2 of the surface velocities of 

sound sources. The frequency resolution is 1f Hz   and the analytical frequency band 

is 0~100 Hz. Furthermore, the characteristic sound pressure frequencies of the 4 sources 

are 1 15f Hz , 2 25f Hz , 3 35f Hz  and 4 15f Hz . 

 

3.2 Numerical simulation 

 In the simulation, we define the number of experimental operating conditions to 

be 11. The first 10 conditions are used as a known dataset (training set), and the last 

condition is used as the data to be predicted (test set). Note that for each condition the 

operating data spans the whole frequency band (0~100 Hz). For traditional OTPA method, 

we use all training data to build the OTPA model with 3%   and test the performance 

of the model by test data. For SVR-based OTPA method, we use every 8 out of 10 

operating conditions in the training set to build 8

10 45C   models, and evaluate each model 

by the test data. The mean of all 45 outputs are used as the final result, and the deviation 

of the output are selected as an indicator of the uncertainty of total or each transfer path 

caused by measurement noise. The 95% predicted uncertainty (95 PPU) is also calculated. 

 As shown in Fig. 2, both the SVR-based OTPA method and traditional OTPA 

method show good generalization ability and their performances in fitting the test result 

is similar, especially for such characteristic frequencies as 25Hz and 35Hz. However, the 

response value at 15Hz is obviously underestimated by both methods. These errors are 

resulted from the unwanted coherence between Source 1 and Source 4, which adds 

numerical difficulties in inversing the transmissibility function matrix. In fact, the 

decomposition of highly coherent sources is known as one of the most challenging 

obstacles in OTPA [5].  

15Hz

25Hz
35Hz

 
Fig. 2 Test and predicted data of response point  
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Fig. 3 Path contribution of (a) Path 1 (b) Path 2 (c) Path 3 (d) Path 4 of test result, SVR 

synthesis mean and 95PPU and traditional OTPA method 

 For each transfer path (  Path i  meaning the transfer path from  Source i  to the 

response point) the path contributions of the test result, the output of proposed method 

and traditional OTPA are compared in Fig. 3. In addition, 95PPU of the output of the 

proposed method is also shown in the figure.  It is evident that the performance of the 

SVR method is much better than traditional OTPA method in predicting the path 

contribution. The same conclusion can also be drawn in terms of root mean square error 

(Table. 1): the RMSE values of proposed method prediction are smaller than that of 

traditional OTPA method prediction, neither the total response nor the path contribution.  

The provided 95PPU of proposed method shows how far prediction changes in 

different models built upon existing experimental operating data, and how severe the 

noise affects the result. If higher noise at some frequency is involved in the data, the result 

at that point will surely show a larger uncertainty interval. However, as traditional OTPA 

method only calculates synthesis once, the result can be any inside that interval, which 

may mislead to identify the wrong dominant path. 

The uncertainty interval in Fig. 3 (d) seems to be more notable than others, while 

it is so because the scale of the Y-axis of (d) is evidently smaller and the uncertainty level 

is actually the same as others. Furthermore, it can be referred that the uncertainty for path 

contribution is related to the variance of the noise while not in relation to the value at 



characteristic frequency (15Hz, 25Hz, and 35Hz). Therefore, an accurate prediction will 

be made if a high signal to noise rate is guaranteed. 

 

Table. 1 RMSE of predicted result using SVR method and Traditional OTPA method 

RMSE Total Response Path1 Path2 Path3 Path4 

SVR synthesis mean 0.1179  0.1978  0.0910  0.2403  0.1311  

Traditional OTPA 0.2170  0.6087  0.8206  0.6919  0.1996  

 

(a)

(b)

(c)

 

Fig. 4 Path contribution at characteristic frequency of (a) 15Hz (b) 25Hz (c) 35Hz 

 Detecting the dominant path at each characteristic frequency is the final and most 

important task for OTPA. In this case, as shown in Fig. 4, path contributions predicted 

by two OTPA methods are compared with the test result. Intuitively, both methods can 

identify the right dominant path, but SVR-based OTPA method outperforms the other one 

in terms of prediction accuracy. The traditional OTPA method fails to give precise 

predictions at certain frequencies: The dominant path prediction in Fig. 4 (a) is 

overestimated and underestimated in Fig. 4 (b) and (c). 

However, the ranking of path contributions is not as reliable as identification of 

the dominant one. Even though we get the right ranking of two OTPA methods in Fig. 4 

(a), their predicted ranking in Fig. 4 (c) is not predicted as expected. That reminds us that 

OTPA methods should not be extended to give contribution ranking to paths.  

 



4.  CONCLUSIONS 

 A new SVR-based OTPA method is proposed in this paper, with emphasis on its 

ability to quantify the uncertainties of transfer path contributions. A simple acoustic 

emitter-and-receiver case is designed and the performance of the new method is examined 

by comparing with the traditional SVD truncated OTPA method. The results show that 

the SVR-based OTPA method outperforms the traditional one in terms of prediction 

accuracy and confidence. Therefore, the proposed method can be used as a better 

alternative for transfer path analysis in NVH applications. 

 

5.  REFERENCES 

 

1. de Klerk, D. and A. Ossipov, Operational transfer path analysis: Theory, guidelines 

and tire noise application. Mechanical Systems and Signal Processing, 2010. 24(7): p. 

1950-1962. 

2. Gajdatsy, P., et al., Critical assessment of Operational Path Analysis: mathematical 

problems of transmissibility estimation. Journal of the Acoustical Society of America, 

2008. 123(5): p. 3869. 

3. Vapnik, V., S.E. Golowich, and A.J. Smola. Support vector method for function 

approximation, regression estimation and signal processing. in Advances in neural 

information processing systems. 1997. 

4. Cherkassky, V. and Y. Ma, Practical selection of SVM parameters and noise estimation 

for SVM regression. Neural networks, 2004. 17(1): p. 113-126. 

5. Bianciardi, F., K. Janssens, and L. Britte, Critical assessment of OPA: effect of coherent 

path inputs and SVD truncation. Proceedings ICSV20, July, 2013. 

 


