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ABSTRACT

The protection against excessive noise has gathered a lot of attention along the
years. Tailored solutions for specific types of noise conditions emerged and many
communications on the subject are published every year. Although designing sound
proofing systems is a well developed topic, building the proposed systems is still
subject to many uncertainties. For instance, the very nature of the foams used in
many broadband absorbers implies a degree of uncertainty on some of the most
important parameters (e.g. the airflow resistivity). This phenomenon is even more
noticeable in modern sound absorbing laminates in which every interface implies
a barely controllable change in the continuity conditions. This effect being rarely
accounted for and the interfaces’ properties hard to quantify, it adds uncertainties
that are widely neglected even though having a potentially strong impact.

In this contribution, the effect of randomly distributed parameters on the overall
acoustic response of multi-layer systems is considered. The influence of choosing
specific acoustic models for each layer is emphasized and the resulting response
envelope is studied.
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1. INTRODUCTION

As noise is a major annoyance for a large part of the population [8] the design of new
soundproofing systems remains a prominent topic in engineering and research year after
year.

In an engineering context, the designers have to devise a compromise between
production costs, customers’ expectations and legal regulations. Satisfying the last two
points is not a trivial task even when reasonable requirements are set. Indeed, the most
commonly used media for building sound packages (poro-elastic foams) are known for
their variability. This phenomenon is observed as much between different batches and
even at different locations on a single panel. Moreover, the standardised methods used to
characterise the properties of poro-elastic media (PEM) are based on small-scale samples
and usually lead to variable results depending on how the panel is sampled.

Admitting there’s a number of uncertainties that can’t be easily alleviated (in the
characterisation & production stages), it is of interest to understand how the variability
of parameters impacts the system’s response.

The present contribution compares the effect of uncertainties on different parameters
has on the simulated responses, accounting as well for different modelling strategies.
The document is organized as follows. Section 2 introduces the physical and numerical
models used to generate the results. Section 3 presents evidence that another technique
than the Monte Carlo approach might be suitable to assess the variability of the response.
Section 4 discusses the choice of the physical models for the films and its impact on the
generated envelopes. An overall conclusion and some ideas for future works follow.

2. MODELS, METHODS AND MEDIA

This section briefly presents the numerical method used to generate the data for this
paper as well as the underlying physical models. The system under study is composed of
two layers of poro-elastic materials (PEM) backed by a perfectly rigid wall (see Figure 1).

z

d D

θ

Figure 1: The system is composed of a PEM of thickness D bonded on a rigid wall topped
by a thin film also porous (which thickness is denoted d).

The present contribution discusses the variability on the system’s response to a plane
wave excitation given an uncertainty on the flow resistivity σ of the film or its thickness
d. Indeed, both these parameters are know to play a prominent role in the behaviour of
the system [15]. In the present contribution the parameters are assumed to be normally
distributed, centred on their "nominal" values. The standard deviation is determined by
measurements performed on a set of film samples. These characterisations are beyond the
scope of the present paper.



Table 1: Physical parameters of the foam and films used in the examples of sections 3
and 4. In the examples the thicknesses are chosen as d = 1 · 10−3 m and D = 3 · 10−2 m.

Parameters (unit) Foam Film a Film b
φ 0.994 0.72 0.04
σ (N·s·m−4) 9045 87·103 775·103

α̃∞ 1.02 1.02 1.15
Λ′ (µm) 197 480 230
Λ (µm) 103 480 230
ρ1 (kg·m−3) 8.43 171 809
ν 0.42 0 0.3
E (Pa) 194.9·103 50·103 260·106

η 0.05 0.5 0.5

2.2.1. Numerical model

The response of the system is computed using the recursive method proposed by Dazel
et al. [5]. This formalism alleviates stability issues sometimes encountered with the more
usual Transfer Matrix Method [10, 11], computing the transmission of the fields layer by
layer instead of relying on a global approach. Details are given in the original paper [5]
and a reference implementation is available online [9].

2.2.2. Physical models

Poro-elastic media are bi-phasic materials with complex interaction between the
skeleton (solid phase) and the interstitial fluid. In the present contribution, the layers are
modelled either as Biot materials (thus accounting for displacement fields in both phases)
or as equivalent fluids (considering, in the present case, a very soft skeleton).

Biot model Following this first model, the evolution of the fields in the medium is
described through a set of couple partial differential equations. Although the original
theory used the solid- and fluid-borne displacements [1–3], the current contribution (as
well as the numerical method) uses the total and solid phase displacements [6] with the
motion equations:

σ̂i j, j = −ω2ρ̃sus
i − ω

2ρ̃eqγ̃ut
i, p,i = ω2ρ̃eqγ̃us

i + ω2ρ̃equt
i, (1)

and the two constitutive laws:

σ̂i j = Âus
i,iδi j + 2Nεi j, p = −K̃equt

i,i. (2)

In these equations, us and ut are respectively the solid and total displacement fields, p
is the interstitial pressure, σ̂ and ε are the in-vacuo stress and strain tensors and δi j is the
Kronecker symbol. Other variables are physical properties of the medium, representing
densities (ρ̃eq,s), compressibility (K̃eq), Lamé coefficients (Â and N) and a fluid/solid
coupling term (γ̃).



Note that the equivalent parameters ρ̃eq and K̃eq are determined following the Johnson-
Champoux-Allard model [1, 4, 12]. For the equivalent compressibility K̃eq:
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with γ0, ν0 and P0 being parameters of the air in the pores (resp. its polytropic coefficient,
kinematic viscosity and atmospheric pressure). The coefficient Λ′ corresponds to the
thermal characteristic length, φ to the porosity and ω is the angular frequency.

And for the equivalent density ρ̃eq:
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(4)
where ρ0 and µ0 are the density and dynamic viscosity of the interstitial air, σ is the flow
resistivity of the medium, Λ its viscous characteristic length and α∞ is the high-frequency
limit of its tortuosity.

This semi-phenomenological model can predict complex interactions between the
phases but requires a lot of different parameters to be characterised. At the cost of some
assumptions, simpler models have been developed which allow to represent specific
types of media using less parameters.

Limp model Assuming its skeleton is very soft, the medium can be modelled as an
equivalent fluid [6] with the following equivalent density ρ̃l:

ρ̃l = ρ̃eq

(
δs1

δs2

)2

, δ2
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ω2
(
ρ̃s − γ̃

2ρ̃eq

)
Â + 2N

, δ2
s2 =

ω2ρ̃s

Â + 2N
(5)

The associated equivalent compressibility is the one proposed by Champoux and
Allard [4] as presented in equation Equation 3. Note that other assumptions, not
referenced herein, might lead to equivalent fluids models with different properties.

A note on empirical models The present contribution aims both at presenting a method
to assess the effect of uncertain parameters and at discussing the differences resulting
from the choice of physical model. For conciseness, this paper focuses on two widely-
used models (Biot and limp) and overlooks another commonly used class of empirical
models. Indeed, models such as those of Delany and Bazley [7] or Miki [14] do not
embed the actual physical relations and it seems unreasonable to use them for uncertainty
quantification.

3. FROM SAMPLES TO BOUNDS

In order to evaluate the response envelope of a system when a parameter is not known
precisely, the most naive technique consists in computing the response for a large number
of random samples from the said parameter’s distribution. This approach relates to Monte
Carlo techniques and is based on the assumption that combining a large number of
samples will eventually lead to a good estimate of the true quantity [13]. Even though



this method is effective it might not be the most efficient when evaluating the model is
costly.

The film are known to predominantly induce a pressure jump [15], thereby slightly
changing the film’s parameters is thought to have mostly an effect on the amplitude of the
reflection/absorption coefficient. To try and simplify the envelope generation process, it is
proposed to compare the so-called Monte Carlo envelope with the responses for specific
values of a parameter ξ (bounds-envelope):

ξ± = ξ̄ ± nξ̂ (6)

where ξ̄ represents the parameter’s nominal value and ξ̂ the associated standard deviation.
The variable n is a real number (even if only integer cases are used here). Note that
choosing n = 1 , n = 2 or n = 3 corresponds to evaluating the bounds-envelopes for the
68%, 95% or 99.7% confidence intervals respectively In the present contribution, ξ refers
either to the flow resistivity σ or to the film’s thickness d.

In the following a specific representation is proposed to compare the different
generated envelopes. The so-called centred envelope for the bounds-envelope for a given
frequency response function R and a varying parameter ξ is computed as:

R(ξ̄ ± nξ̂) − R(ξ̄) (7)

Note that in the case of the Monte Carlo results, one may compute the envelopes either
by evaluating the sample-wise standard deviation (standard deviation envelope) or by
using the two following curves (extremal envelope):

min
S

(
RMC( f )

)
− < RMC( f ) >S and max

S

(
RMC( f )

)
− < RMC( f ) >S (8)

where < · >S denotes the sample-wise average, and min
S

, max
S

are the sample-wise
maximum and minimum.
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Figure 2: Comparison between Monte Carlo envelopes (draws in thin blue, standard
deviation envelope with • and extremal envelope with N) and bounds-envelopes in red (n =

1 in solid lines, n = 2 in dashed lines and n = 3 in dotted lines). For two different films
with parameters presented in Table 1 at normal incidence (θ = 0) for a 10% deviation of
σ in the film.

The comparison is shown in figure 2 and one sees that the bounds-envelopes match
their Monte-Carlo equivalent closely. The standard deviation envelope from the Monte



Carlo results fits the n = 1 curve as expected given the normal distribution’s properties.
The extremal envelope lies between the n = 2 and n = 3 curves that both follow the trend
of the Monte Carlo envelope. The reason why there is no perfect match is that the number
of draws in the Monte Carlo computation isn’t large enough to completely cover the range
of variation.

These results support the claim that for some parameters (in the present case σ), the
costly Monte Carlo procedure can be replaced by a few computations at specific values of
the variation interval. This reduces the cost of computing the envelopes but requires that
this technique is tested for each and every varying parameter.

4. ENVELOPES’ FEATURES

In Figures 3 and 4 the bounds-envelopes (n = 1) for different varying parameters
(the film’s flow resistivity σ on Figure 3 and its thickness d on 4) are computed for
two different films (parameters in Table 1) are compared to the Monte Carlo standard
deviation envelopes. Especially, this figures displays the envelopes generated for 2
different physical models for the film (Biot and Limp).
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Figure 3: Influence of the model choice for a 10% standard deviation on the film’s flow
resistivity σ.
Top: average curve for a Monte Carlo resolution (in blue solid lines) and the nominal
curves for two different physical models in the film (Biot in solid lines with N markers
and Limp with dashed lines and H markers). Bottom: Centred envelopes generated for
the different models: Monte-Carlo standard deviation in blue, bounds-envelopes with
Biot model in solid red lines with N markers and bounds-envelope with Limp model in
dashed red lines with H. Generated for the two films presented in Table 1 and two angles
(θ = 30 deg in light colours and θ = 89 deg, grazing incidence, in darker shades).

First of all, it seem that the average and nominal curves computed with the different
models (shown on the upper part of the figures) agree over the whole frequency band and
for both films and both angles.

It’s seen as well that the bounds-envelopes generated using a Biot model closely follow
the Monte Carlo reference over the whole frequency band. This is not the case for the
Limp model that diverges around resonances. Even though seemingly equivalent for
the nominal curve, choosing a Biot or a Limp model for the film (while keeping the
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Figure 4: Influence of the model choice for a 10% standard deviation on the film’s
thickness d.
Top: average curve for a Monte Carlo resolution (in blue solid lines) and the nominal
curves for two different physical models in the film (Biot in solid lines with N markers
and Limp with dashed lines and H markers). Bottom: Centred envelopes generated for
the different models: Monte-Carlo standard deviation in blue, bounds-envelopes with
Biot model in solid red lines with N markers and bounds-envelope with Limp model in
dashed red lines with H. Generated for the two films presented in Table 1 and two angles
(θ = 30 deg in light colours and θ = 89 deg, grazing incidence, in darker shades).

rest untouched) results doesn’t allow reconstructing a envelope whereas choosing a Biot
model does.

The envelopes generated using the Monte Carlo approach or the bounds approach with
a Biot model for the film show an interesting effect: they tend to collapse at specific
frequencies. In figure 5, the centred bounds-envelopes are computed up to 10kHz and
it is seen that they seem to have periodic constrictions, and even complete collapses at
given frequencies. For the higher part of the spectrum, this can be linked to modes
in the absorber however, the collapses/constrictions lower in frequency remain to be
investigated.

5. CONCLUSION

Considering envelopes in place of single "nominal" curves gives a better representation
of reality. Indeed the components of modern absorbers have an important parameters
variability that might impact the full system’s properties. This has to do with the
characterisation techniques used to determine the properties: relying on a few small-sized
samples, the reported values might not always represent perfectly the media under study.

The present contributions shows that Monte Carlo is not the only viable method to
determine the envelopes and that simpler models (such as Limp) might be used over part
of the frequency band to analyse the effects. Understanding what causes the constrictions
might be a way to understand how interactions are accounted for by the different models
and how it might impact the quantification of uncertainties.
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Figure 5: Centred envelope generated using the bounds methods with the film modelled
as a Biot material over a large frequency band for three different incidence angles (0, 30
and 89 deg from the darkest to the lightest) and two different films. Top: assuming a 10%
standard deviation on the film’s flow resistivity σ and, Bottom: assuming a 10% standard
deviation on the film’s thickness.
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