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ABSTRACT

High frequency nonlinear gas oscillations in a one-dimensional finite
space bounded by two flat plates are considered based on the numerical
analysis of the Boltzmann–Krook–Welander equation (the BGK model
of the Boltzmann equation), which is a nonlinear integro-differential
equation for the velocity distribution function of gas molecules. The
gas oscillation is assumed to be excited by the plates, which oscillate
harmonically keeping the distance between them, like a gas motion in
a vessel on a shaker. The initial and boundary value problem of the
integro-differential equation is numerically solved with a finite difference
and Simpson’s rule. The solution at the resonance condition predicted
from the continuum theory shows the shock wave in the steady oscillation
state. The discontinuity in the velocity distribution function is also
demonstrated.
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1. INTRODUCTION

We consider the high frequency nonlinear gas oscillation in a one-dimensional
finite space bounded by two flat plates. The plates oscillate harmonically in the
normal direction, keeping their distance constant. When the distance and the
frequency of oscillation satisfy a resonance condition, a resonant gas oscillation
occurs and the amplitude of oscillation becomes large in time. If the nonlinear
effect dominates the dissipation effect, the shock wave is formed in the oscillation
process. The nonlinear gas oscillation in a closed tube with oscillating piston at
one end has been studied by many authors [1–5]. The present problem, however,
is different from them in that the gas oscillation is excited not by the oscillating
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piston but by the oscillation of the gas-filled space bounded by two plates; this is a
model of vibration of a vessel by a shaker. In particular, we are aiming to clarify
the nonequilibrium effect on the gas oscillations, which appears in the case that the
mean free path and mean free time of gas molecules cannot be neglected compared
with the wavelength and the period of oscillation, respectively. Acoustics based
on fluid mechanics (i.e., continuum theory) cannot describe such a situation. The
kinetic theory of gases based on the Boltzmann equation (rarefied gas dynamics or
molecular gas dynamics) is applied instead [6–8].

2. FORMULATION OF PROBLEM

Suppose that a finite space bounded by two flat plates with distance L is filled
with a monatomic gas. At an initial state, the plates are at rest with temperature
T0, and the gas is in an equilibrium state of temperature T0 and density ρ0. The
mean free path �0 and mean free time t0 in the equilibrium state are estimated by
[6–8]
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where μ0 is the viscosity coefficient of the gas in the equilibrium state, R is the
specific gas constant, and γ1 is a nondimensional constant depending on the model
of molecular interaction in the gas. At time t = 0, the two plates begin oscillating
harmonically with amplitude a and angular frequency ω. The temperature of the
plates are kept at T0 all the time. We numerically study the resulting gas motion
on the basis of the kinetic theory of gases.

The problem is mathematically formulated with nondimensional variables defined
as follows:
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where t is the time from the beginning of oscillation, xi is the spacial coordinate
(i = 1, 2, 3) (x1 in the normal direction of the plate), ξi is the xi-component of the
molecular velocity, f is the velocity distribution function of the gas molecules. Note
that, although the gas motion is assumed as one-dimensional in the physical space,
the molecular velocity is the three-dimensional vector.

The governing equation is the Boltzmann–Krook–Welander equation (the BGK
model of the Boltzmann equation), the nondimensional form of which can be written
as [8]
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where ρ̂ = ρ/ρ0, ûj = uj/
√
2RT0 and T̂ = T/T0 in Equation 3 are defined by the

integrals of unknown function f̂ over the whole velocity space in Equation 4. The



Boltzmann–Krook–Welander equation is therefore a nonlinear integro-differential
equation.

The boundary condition on the left plate is
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and that on the right plate is
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where Z(t̂) denotes the oscillation of the plates,
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The acoustic Mach number M , the nondimensional angular frequency Ω and the
nondimensional distance between the plates L̂ are defined as
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Equations 5–8 represent the diffuse-reflection condition [8]. The initial condition is

f̂ = (π)−3/2 exp
(− ζ2j

)
at t̂ = 0 for 0 � x̂1 � L̂ (11)

In the case that M � 1, Ω � 1 and L̂ � 1, the gas motion may be described by
the classical acoustics. In the coordinate moving with the plate, X = x̂− Z(t̂), the
governing equation can be written as
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where U = û1 − dZ(t̂)/dt, and the boundary conditions are U = 0 at X = 0 and
U = 0 at X = L̂. . If we ignore the initial condition, the solution of Equation 12 is
given as
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where n is an integer. Due to the singularity of tangent in Equation 13, we see that
the resonance condition in the classical acoustics is√

6

5
ΩL̂ = nπ (n = 1, 3, 5, ...) (14)

For example, for n = 1, we have
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3. NUMERICAL METHOD

To solve the problem numerically, first of all, we eliminate two molecular velocity
components ζ2 ad ζ3 [9]. Then, the velocity distribution function becomes a function
of x̂ = x̂1, ζ1 and t̂. The left-hand side of Equation 3 is discretized with the second-
order finite difference in space and the first-order finite difference in time. The
integrals in the right-hand side of Equation 3 are reduced to integrals with respect
to ζ1, and evaluated by Simpson’s rule.

4. NUMERICAL RESULT

In the following, we present typical examples of numerical results for the resonance
of the fundamental mode,

√
(6/5)ΩL̂ = π (n = 1), and a non-resonance case,√

(6/5)ΩL̂ = 2π (n = 2).

4.4.1. Velocity profiles

Figures 1–3 show the velocity profiles of every 1/8-cycle between 40th cycle
and 50th cycle from the beginning of oscillation. In all cases shown here, the
gas oscillations reach steady oscillation states. In a moderately low frequency case
shown in Figure 1, we can see a shock wave in the resonance mode and the waveform
distortion due to the nonlinearity in the non-resonance mode. A shock wave in the
resonance mode and the waveform distortion in the non-resonance mode also take
place in a high frequency case shown in Figure 2. In Figure 3, however, the shock
wave disappears because the nonequilibrium effect works dissipatively.

4.4.2. Velocity distribution function

In Figure 4, we present the velocity distribution function of the gas molecules
on the left plate (X = 0) at every 1/8-cycle in the 50th cycle. The dashed
lines correspond to the velocity of plate and the velocity distribution functions are
discontinuous at those velocities.
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Figure 1: The velocity profiles in a moderately low frequency case. (a): The
fundamental mode (n = 1). (b): A non-resonance mode (n = 2).
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Figure 2: The velocity profiles in a high frequency case. (a): The fundamental mode
(n = 1). (b): A non-resonance mode (n = 2).
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Figure 3: The velocity profiles in a very high frequency case. (a): The fundamental
mode (n = 1). (b): A non-resonance mode (n = 2).

5. CONCLUSIONS

We have presented the numerical results of high frequency gas oscillation obtained
from the numerical solutions of the Boltzmann–Krook–Welander equation and the
diffuse-reflection condition on the oscillating plates. As a result, it is confirmed that
the nonequilibrium effect works dissipatively. The discontinuities in the velocity
distribution function are also demonstrated. The results in a moderately low
frequency case qualitatively agree with those predicted by the continuum theory.
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Figure 4: The velocity distribution function of gas molecules on the plate in a very
high frequency case. The fundamental mode (n = 1). The dashed lines correspond
to the velocity of plate.

However, as can be seen from the fact that the velocity distribution function is not
a Maxwellian, the analysis of high frequency gas oscillation inevitably requires the
kinetic theory of gases.
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