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ABSTRACT 

Statistical energy analysis (SEA) is a method for understanding energy transfer 

paths related to vibration noise generation. In SEA, a target object is separated 

virtually into subsystems among which the transfer of vibration energy can be 

quantified. Conventionally, SEA is applied to structures that comprise thin plates, 

such as the bodies of large ships. The structure is then designed so that the transfer 

of vibration energy is varied to avoid energy being concentrated on any one 

subsystem. Although SEA is an effective method for preventing vibration noise 

problems, it becomes critically inaccurate when applied to structures with low 

modal density. This paper is aimed at establishing a new measuring method that 

provides high accuracy for structures with arbitrary modal density. Evaluations of 

three simplified structures with different modal densities are conducted to 

determine how to improve the conventional measurement method. 

 

Keywords: Noise, Vibration, SEA, Experimental, Modal Density 

I-INCE Classification of Subject Number: 72 

 

1.  INTRODUCTION 

Finite element analysis (FEA) and experimental modal analysis are typically used 

to analyze vibration noise in mechanical structures. These methods are effective for 

relatively low frequencies, at which the modal density also tends to be relatively low, 

thereby allowing these methods to identify the few modes that are responsible for the 

vibration. This allows countermeasures to be applied to the nodes and antinodes of the 

relevant modal vibrations. However, at relatively high frequencies, at which the modal 

density also tends to be relatively high, many modes are responsible. It then becomes 

extremely difficult to improve the vibration characteristics by suppressing all the relevant 

modes. 
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Conversely, statistical energy analysis (SEA) [1] is known to be effective for 

analyzing vibration noise at high frequencies. SEA treats the target object as a group of 

subsystems and focuses on the power balance among those subsystems. This technique 

has been applied to large structures that consist of thin panels, including ships and 

automobiles [2], [3]. SEA enables structural design from a perspective different from that 

of FEA and experimental modal analysis, which deal with modes, by adjusting the power 

transferred among the subsystems to prevent vibration noise problems. However, a 

disadvantage of SEA is that its analytical accuracy degrades at low frequencies, at which 

the modal density tends to be low. For this reason, SEA is typically not used for low-

frequency analysis. 

This paper proposes and verifies a high-precision analysis method that applies 

experimental SEA to block structures whose modal density is lower than that of panel 

structures. 

 

2.  FUNDAMENTAL EQUATIONS OF SEA MODEL 

SEA considers the target object as a group of subsystems and focuses on the power 

balance among those subsystems. If subsystem i is adjacent to subsystem j, then the 

power balance equation for subsystem i consists of (i) the power Pi input from outside the 

system, (ii) the dissipation power Pdi converted into heat inside subsystem i, (iii) the 

power Pij transferred to the adjacent subsystem j, and (iv) the power Pji transferred from 

the adjacent subsystem j.  

We will consider a system that consists of two structural subsystems as shown in 

Fig. 1. The power balance for subsystems 1 and 2 is represented by  

𝑃1 = 𝑃𝑑1 + 𝑃12 − 𝑃21, (1) 

𝑃2 = 𝑃𝑑2 + 𝑃21 − 𝑃12. (2) 

The dissipation power Pdi is given by Equation 3 using the vibration energy Ei of 

subsystem i at angular frequency ω:  

𝑃𝑑𝑖 = ω𝜂𝑖𝐸𝑖 , (3) 

Here, the proportionality factor ηi, known as the internal loss factor (ILF), indicates 

attenuation in subsystem i. The power Pij transferred from subsystem i to subsystem j is 

given by  

𝑃𝑖𝑗 = ω𝜂𝑖𝑗𝐸𝑖, (4) 

where ηij, known as the coupling loss factor (CLF), is a parameter specific to SEA that 

quantifies the ease with which energy is transferred between the subsystems. Substituting 

Equations 3 and 4 into Equations 1 and 2 and rearranging gives  

 

Figure 1: Power balance equations of two subsystems 



[
𝑃1
𝑃2
] = ω [

𝜂1 + 𝜂12 −𝜂21
−𝜂12 𝜂2 + 𝜂21

] [
𝐸1
𝐸2
], (5) 

which is rearranged further to give  

𝐏 = ω𝐋𝐄, (6) 

where P is the input power vector, E is the vibration energy vector, and L is the loss factor 

matrix. 

 

3.  CONVENTIONAL METHOD 

In this section, a model-identification method based on conventional experimental 

SEA is introduced, and the model accuracy is assessed when three kinds of structures 

with different modal densities are analyzed by the conventional method. Furthermore, the 

cause of low accuracy is studied, and we clarify points to improve. 

 

3.1.  Identifying a Model Experimentally 

In the case of an existing object, the ILFs and CLFs can be calculated by 

conducting an excitation experiment to measure the input power and the vibration energy. 

This technique is called experimental SEA. Several methods for obtaining the ILFs and 

CLFs have been proposed. The power injection method [3] calculates the ILFs and CLFs 

simultaneously, and the approximated power injection method [4] determines the CLFs 

by considering only the adjacent subsystems. In the present study, the excitation 

experiment was conducted based on the approximated power injection method, which 

excites an arbitrary subsystem and measures the responses of that subsystem and the 

adjacent subsystems. This process is then conducted on all subsystems to identify the 

ILFs and CLFs. When a subsystem is excited, the excitation force and accelerance at an 

excitation point are measured to determine the input power. The accelerance at a response 

point is then measured to obtain the vibration energy. The input power and the vibration 

energy of each subsystem are given by  

𝑃𝑖 =
1

2
Re[𝐹 ∙ 𝑣𝑖𝑛𝑝𝑢𝑡] = −

1
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In Equation 7, F is the excitation force, vinput is the velocity at the excitation point, ainput 

is the accelerance at the excitation point, and f is the excitation frequency. Re[] specifies 

the real part and Im[] the imaginary part. In Equation 8, mi is the effective mass of 

subsystem i, vi is the velocity of subsystem i, ak is the accelerance response at 

measurement point k on subsystem i, n is the number of response points per subsystem, 

and the asterisk specifies the complex conjugate. 

Using Pi and Ei from Equations 7 and 8, the ILF ηi and the CLF ηij are determined 

by  
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where Eii is the vibration energy of subsystem i when that subsystem is excited, and Eji is 

the vibration energy of subsystem j when subsystem i is excited. 

Conventionally, experimental SEA is often used in frequency ranges in which 

elastic vibration is dominant and the modal density is high [2], [5]. In that frequency range, 

vibration in the out-of-plane direction becomes dominant on objects whose thickness is 

less than the planar dimensions [6], [7]. For that reason, the excitation force is loaded in 

only the out-of-plane direction and the response is measured in only the out-of-plane 

direction. 

By contrast, experimental SEA is almost never used in frequency ranges with low 

modal density, where the model accuracy is reported to deteriorate. That is the main 

reason why no examples can be found. One of the main themes of the present paper is to 

identify the causes for this low model accuracy and realize a way to obtain sufficient 

accuracy. 

 

3.2.  Relationship between Modal Density and Model Accuracy 

In this subsection, we determine how the modal density affects the model accuracy. 

Experimental SEA models are constructed of three kinds of targets with different modal 

densities as shown in Table 1. The specifications of each target are given in Sections 3.2.1, 

3.2.2, and 3.2.3. 

 

3.2.1.  L-shaped Structure 

The first example is an L-shaped structure that is made of steel and comprises two 

crossed planes as shown in Fig. 2(a). The structure is supported by strings as shown in 

Fig. 2(b), and frequency response function shown in Fig. 2(c) was obtained from a 

hammering test. There are more than 40 modes in the range 0–2 kHz, giving a modal 

density greater than 20/kHz. 

We assess the model accuracy of the conventional experimental SEA method for 

this structure. As shown in Fig. 3(a), the model is taken to have two subsystems that are 

connected at the bending part. Excitation points and response points are located at the 

center of each subsystem. Excitation is applied in the out-of-plane direction and the 

response is measured in the out-of-plane direction. With the excitation force F, the 

accelerance ainput of the excitation point, and the accelerance ak of the response point all 

obtained from the excitation experiment, the ILF ηi of each subsystem and the CLF ηij 

between the two subsystems are identified using Equations 7–10. Using ηi, ηij, and the 

input power Pi, the predicted vibration energy can be obtained. Meanwhile, using F, ainput, 

ak, and Equation 8, the measured vibration energy can be obtained. The more precisely  

Table 1. Example structures with different modal densities 

 



we can identify ηi and ηij, the less the error between the predicted and measured vibration 

energies. 

The results of the predicted and measured vibration energies are shown in 

Fig. 3(b). The two energies agree with each other below 2 kHz, with the largest error 

being approximately 5 dB at 0.315 kHz. We can therefore conduct this level of model 

identification using the conventional experimental SEA method. 

 

3.2.2.  Solid-core Structure 

The second example is a solid-core structure made of aluminium as shown in 

Fig. 4(a). The structure is supported by strings as shown in Fig. 4(b), and frequency 

response function shown in Fig. 4(c) was obtained from a hammering test. There are no 

modes below 14 kHz, which is the first resonance frequency, so the modal density is zero. 

We assess the model accuracy of the conventional experimental SEA method for 

this structure. As shown in Fig. 5(a), the model is taken to have two subsystems that are 

divided by the diagonal line. Excitation points are located at the center of each subsystem, 

and response points are located on the edge of each subsystem. Excitation is applied in 

the out-of-plane direction and the response is measured in the out-of-plane direction. The 

results for the predicted and measured vibration energies are shown in Fig. 5(b). There is 

now a large error at every frequency, particularly below 6.3 kHz, where the error exceeds 

20 dB error. It is therefore unrealistic to apply the conventional method in this case, and 

improvement is needed to conduct precise model identification. 

 

(a) Overview              (b) Boundary condition       (c) Frequency response function 

Figure 2: L-shaped structure 

 

(a) Subsystems                            (b) Measured and predicted vibration energies 

Figure 3: Statistical energy analysis (SEA) data for L-shaped structure 



 

3.2.3.  Hollow Structure 

The third example is a hollow structure made of aluminium as shown in Fig. 6(a). 

The structure is supported by strings like the solid-core structure in Fig. 4(b), and the 

frequency response function shown in Fig. 6(b) was obtained from a hammering test. 

There are no modes below 9 kHz, which is the first resonance frequency, so rigid-body 

movement is dominant in that frequency range. Otherwise, there are five modes in the 

range 10–20 kHz, giving a modal density of 0.5/kHz in that range. 

 

(a) Overview              (b) Boundary condition       (c) Frequency response function 

Figure 4: Solid-core structure 

 

(a) Subsystem                          (b) Measured and predicted vibration energies 

Figure 5: SEA data for solid-core structure 

 

(a) Overview                                            (b) Frequency response function 

Figure 6: Condition of hollow structure 



We assess the model accuracy of the conventional experimental SEA method for 

this structure. As shown in Fig. 7(a), the model is taken to have two subsystems that are 

divided by the diagonal line as with the solid-core structure. Excitation points are located 

at the center of each subsystem, and response points are located on the edge of each 

subsystem. Excitation is applied in the out-of-plane direction and the response is 

measured in the out-of-plane direction. The results for the predicted and measured 

vibration energies are shown in Fig. 7(b). There is again a large error at every frequency, 

particularly below 10 kHz, where the error is approximately 20 dB. It is therefore 

unrealistic to apply the conventional method in this case also, and improvement is again 

needed to conduct precise model identification. 

 

3.3.  Effect of Modal Density on Vibration Behavior 

As shown above, in contrast to the L-shaped structure with its high modal density, 

the model accuracy is low for both the solid-core structure and the hollow structure with 

their low modal densities. To investigate the reason for this, we analyzed the vibration 

behavior of each structure using the general-purpose FEA software ANSYS 18.2 

(ANSYS Inc.). 

First, we consider the vibration behavior of the L-shaped structure, which contains 

many modes in the frequency range 0–2 kHz, as shown in Fig. 2(c). The FEA model of 

this structure is shown in Fig. 8(a). The accelerances of points A (center of subsystem 1) 

and B (center of subsystem 2) were calculated when an excitation force of 1 N was 

applied to point A in the x (out-of-plane) direction. The accelerances are shown in 

Fig. 8(b) and (c), where the blue short-dash line is the accelerance in the x direction, the 

green long-dash line is that in the y direction, the orange dot-dash line is that in the z 

direction, and the solid black line is the root-mean-square (RMS) accelerance of the three 

orthogonal directions. For points A and B, the accelerances in the x and z directions, 

respectively, are both nearly equal to the RMS. The results indicate that the vibration 

energy can be obtained from the accelerance in the out-of-plane direction, corresponding 

to the result in Fig. 3(b) that the measured and predicted vibration energies agree with 

each other. 

Next, we consider the vibration behaviors of the solid-core and hollow structures, 

whose FEA models are shown in Fig. 9. The accelerances of points A (center of the xz 

plane of subsystem 1), B (center of xy plane of subsystem 2), and C (edge of the yz plane 

of subsystem 2) were calculated when an excitation force of 1 N was applied to point A  

 

(a) Subsystem                            (b) Measured and predicted vibration energies 

Figure 7: SEA data for hollow structure 



in the y (out-of-plane) direction. The results for the solid-core structure are shown in 

Fig. 10, and those for the hollow structure are shown in Fig. 11; the lines have the same 

meanings as in Fig. 8. 

At low frequency, the accelerance of point A in the y (out-of-plane) direction is 

nearly equal to the RMS, but the accelerances of points B and C in the z and x (out-of-

plane) directions are both far from the RMS. However, the fact that the accelerance of 

each response point in the y excitation direction is nearly equal to the RMS makes the y  

 
(a) FEA model             (b) Accelerance of point A           (c) Accelerance of point B 

Figure 8: Accelerance of the L-shaped structure in each direction as calculated by finite 

element analysis (FEA) 

 

(a) FEA model of solid-core structure           (b) FEA model of hollow structure 

Figure 9: FEA models of the solid-core and hollow structures 

 

(a) Point A                              (b) Point B                             (c) Point C 

Figure 10: Accelerance of the solid-core structure in each direction  



direction the dominant one. Nevertheless, the accelerances of points B and C in the x and 

z directions increase at higher, in some cases exceeding that in the y direction. 

Furthermore, the distinction between low and high frequency is at 12.5 kHz in the case 

of the solid-core structure and at 8 kHz in the case of the hollow structure. For both 

structures, this separating value also distinguishes between the frequency range in which 

there are no modes and the one in which there are scattered modes, as shown in Figs. 4(c) 

and 6(c). Therefore, calculating the vibration energy requires (i) only the accelerance in 

the excitation direction in the no-mode frequency range and (ii) the accelerances in all 

three orthogonal directions in the scattered-mode frequency range. 

 

4.  PROPOSED METHOD 

Thus far, we have clarified various points regarding how to conduct precise model 

identification for three structures with different modal densities. In this section, we assess 

the effectiveness of a new method for conducting precise model identification. 

 

4.1.  Perspective and Method of Improvement 

To improve the model accuracy, we consider how experimental SEA acts in three 

types of frequency range with different vibration behaviors, namely (i) a frequency range 

in which there are clusters of modes (e.g., the 0–2 kHz range for the L-shaped structure), 

(ii) a no-mode frequency range (e.g., the 0–14 kHz range for the solid-core structure and 

the 0–9 kHz range for the hollow structure), and (iii) a scattered-modes frequency range 

(e.g., the 14–20 kHz range for the solid-core structure and the 9–20 kHz range for the 

hollow structure). 

In frequency range (i), the accelerance in the out-of-plane direction is much larger 

than those in the in-plane directions and nearly equal to the RMS of accelerances in all 

three orthogonal directions. Consequently, to obtain the vibration energy precisely, it is 

sufficient to measure only the accelerance in the out-of-plane direction. That is the 

conventional method discussed in Section 3.1. 

In frequency range (ii), the accelerance in the excitation direction becomes nearly 

equal to the RMS of accelerances in all three orthogonal directions. Consequently, to 

obtain the vibration energy precisely, it is sufficient to measure only the accelerance in 

the excitation direction. 

In frequency range (iii), because the accelerance shows large values randomly in 

each direction, we must measure the accelerances in all three orthogonal directions to 

obtain the vibration energy precisely. 

 

(a) Point A                             (b) Point B                            (c) Point C 

Figure 11: Accelerance of the hollow structure in each direction   



The effectiveness of the improved method is assessed in Sections 4.2 and 4.3 for 

frequency ranges (ii) and (iii), respectively. Because changing the excitation points and 

response points would change the vibration energy, we assess the improved method using 

the same points as those used to assess the conventional method. 

 

4.2.  Validation in No-Mode Frequency Range 

In a no-mode frequency range, the proposed method for obtaining the vibration 

energy precisely involves only the accelerance in the excitation direction. Here, validation 

is performed using the solid-core structure and the hollow structure. 

The solid-core structure and hollow structure are subjected to model identification 

as in Sections 3.2.2 and 3.2.3. Here, we measure only the accelerance in the y direction, 

namely the excitation direction. The measured and predicted vibration energies are shown 

in Fig. 12. Here, we introduce a calculation method that accounts for the influence of 

rigid-body movement [8]. For both structures, the accuracy is high in the relevant no-

mode frequency range, thereby confirming that measuring in only the excitation direction 

is effective for obtaining the vibration energy precisely in a no-mode frequency range. 

 

4.3.  Validation in Scattered-modes Frequency Range 

The proposed method for obtaining the vibration energy precisely in a scattered-

modes frequency range involves determining the accelerances in all three orthogonal 

directions. Here, validation is done using the solid-core structure and the hollow structure. 

The solid-core structure and hollow structure were subjected to model 

identification as in Sections 3.2.2 and 3.2.3. Here, we measure the accelerances in the x, 

y, and z directions, and the measured and predicted vibration energies are shown in Fig. 13. 

For both structures, the accuracy is high in the relevant scattered-modes frequency range, 

thereby confirming that measuring in all three orthogonal directions is effective for 

obtaining the vibration energy precisely in a scattered-modes frequency range. 

 

4.4.  Unified Method for All Frequency Ranges 

Thus far, we have confirmed that (i) the conventional method of measuring the 

accelerance in the out-of-plane direction is effective in a frequency range in which there 

are clusters of modes, (ii) the proposed method of measuring the accelerance in the 

excitation direction is effective in a no-mode frequency range, and (iii) the other newly 

proposed method of measuring the accelerance in all three orthogonal directions is 

effective in a scattered-modes frequency range. However, the fact that the choice of  

 

(a) Solid-core structure                                 (b) Hollow structure 

Figure 12: Measured vibration energy (solid red line) of each structure compared with 

that predicted by applying unidirectional excitation and then measuring the response in 

the excitation direction (dashed blue line) 



measuring direction depends on the frequency range means that the modal density must 

be determined and the frequency range of the target object must be assessed in advance. 

Therefore, a unified method is required that can be used for all frequency ranges. 

The conventional method and the two proposed methods are all based on the idea 

that the measuring direction should be the one that contributes most to the vibration 

energy. Therefore, the accelerances in the other directions are much smaller. Here, the 

three orthogonal directions in which measurements are made in a frequency range that 

has scattered modes include the out-of-plane direction and the excitation direction. We 

therefore reason that the method of measuring in all three orthogonal directions can be 

applied with high accuracy to both a no-mode frequency range and a frequency range in 

which there are clusters of modes. For a no-mode frequency range, this method gives 

precise model identification, as already shown in Fig. 13. For a frequency range in which 

there are clusters of modes, the method was applied to the L-shaped structure in an 

additional experiment, and the results are shown in Fig. 14. The vibration energies agreed 

reasonably over the entire frequency range, meaning that the method is also applicable to 

a frequency range in which there are clusters of modes. The method of measuring the 

accelerances in all three orthogonal directions is therefore applicable to all frequency 

ranges. 

 

 

(a) Solid-core structure                                   (b) Hollow structure 

Figure 13: Measured vibration energy (solid red line) of each structure compared with 

that predicted by applying excitations and then measuring the responses in all three 

orthogonal directions (dashed blue line) 

 

Figure 14: Measured vibration energy (solid red line) of the L-shaped structure and 

that predicted by applying excitations and then measuring the responses in all three 

orthogonal directions (dashed blue line) 



5.  CONCLUSIONS 

The conventional opinion of experimental SEA is that its model accuracy is 

critically poor in frequency ranges with low modal density. In the present study, we 

analyzed the vibration behaviors of three different structures and found that both the 

vibration behavior and the appropriate method for measuring the vibration differed 

according to the frequency range, as explained below. However, the newly proposed 

method of measuring the accelerances in all three orthogonal directions gives sufficient 

accuracy in all frequency ranges. 

1) In a frequency range in which there are clusters of modes, the accelerance in 

the out-of-plane direction makes the main contribution to the vibration energy. Highly 

accurate model identification can therefore be conducted by measuring only the 

accelerance in the out-of-plane direction. 

2) In a no-mode frequency range, the accelerance in the excitation direction makes 

the main contribution to the vibration energy. Highly accurate model identification can 

therefore be conducted by measuring only the accelerance in the excitation direction. 

3) In a scattered-modes frequency range, the accelerances in all three orthogonal 

directions influence the vibration energy. Highly accurate model identification can 

therefore be conducted by measuring the accelerances in all three orthogonal directions. 
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