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ABSTRACT

For narrow band vibration control applications, the alternating stop band
characteristics of periodic structures have been widely used. The objective of the
present work is to extend this idea for broadband excitations. We seek to synthesize
a torsional periodic structure having the largest fraction of the frequencies falling in
the attenuation bands of the structure. The unit cell of such a periodic structure is
comprised of two distinct regions having different inertial and stiffness properties.
Guidelines are derived for suitable selection of inertial and stiffness properties of
the two regions in the unit cell, such that the maximal frequency region corresponds
to attenuation bands of the periodic structure. It is found that higher the impedance
mismatch between the neighbouring regions of the unit cell leads to maximal
attenuating frequencies. It is found that more than 98% of the frequencies are
blocked in the extreme case. For torsional excitations, it is shown that large, finite
periodic structures corresponding to the optimal unit cell derived using the infinite
periodic structure theory has significant vibration isolation benefits in comparison
to a homogeneous structure or an arbitrarily chosen periodic structure. The
periodic structure synthesized has potential applications in marine engines, where
long rods are required for power transmission.
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1. INTRODUCTION

A periodic structure consist of a repeating unit, defined as a unit cell. The wave
propagation in the periodic structure comprises of well-defined frequency ranges wherein
the amplitude of the wave attenuates exponentially. These frequency bands are defined
as the stop band of the periodic structure. The frequency bands other than stop bands
are termed as pass-band where the waves are transmitted without any attenuation. The
remarkable characteristics of a periodic structure are the presence of the stop band and
pass-band over the frequency domain. The pass-band and stop-band for such structures
depend upon the unit cell. The attenuation characteristics of the periodic structure for the
frequency range within the stop band are particularly significant in noise and vibration
control applications. The pass-band and stop band characteristics for rods [1],beams [2]
and plates [3] have been studied theoretically and experimentally.

Torsional vibration is one of the common modes of vibration in long shafts. The long
shafts are typically used in power transmission in naval engines. The unbalanced forces
leads to the torsional vibration for the shafts. As a result the service life of the shaft and
its reliability gets affected. Various studies have investigated the band gap properties of
periodic rod undergoing torsional mode of vibration. Torsional waves propagation in rod
having stepped diameter has been studied in [4, 5]. The periodic torsional rod is used
in detecting torsional waves with the help of transducer in [6]. Low frequency torsional
band gaps in shafts were studied by Dianlong et.al and the effect of shaft material was
investigated. [7]. The band structure of periodic shafts with various attached structure
were studied by Yubao et.al [8]. In all the works stated above the shaft is designed for
a narrow band excitation. In these narrow band excitation the vibration remain localized
and are not transmitted away from the source. Thus an important goal would be to design
structure for broadband excitation. The objective of these work is to design a bi-material
periodic torsional rod consisting of two different regions with two different regions refer
Fig.1. The design objective is attain attenuation across all the frequency ranges. The
aim is to evaluate the optimal combination of (viz..,G1J1/G2J2, ρ1J1/ρ2J2) between the
adjacent region which will give rise to maximal attenuation characteristics across the
frequency spectrum.

2. TORSIONAL WAVES IN AN INFINITE BIMATERIAL ROD

Consider a periodically segmented rod of infinite length as shown in Fig. 1 undergoing
torsional motion. The unit cell is made up of two different constituents and different
geometric properties which is captured by the function α(x) = G(x)J(x) and Φ(x) =

ρ(x)J(x) as torsional stiffness and polar mass moment of inertia. The governing equation
of the structure is [9]

∂

∂x

(
α(x)

∂

∂x
θ (x, t)

)
= Φ(x)

∂2

∂t2 θ (x, t) (1)

We consider a harmonic solution of the form θ = Θ(x)eiωt. Thus, the above equation
becomes,

d
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− Φ(x)ω2Θ (x) = 0 (2)
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Figure 1: (a) Infinite one-dimensional periodic structure (b) Unit cell along the the non-
dimensional coordinate ζ.

2.2.1. Transfer Matrix formulation

The function α(x) and Φ(x) are periodic in x with a periodicity of l. α(x) is given by

α(x) =

{
(G1 J1+G2 J2

2 ) + (G1 J1−G2 J2
2 ) = αa +

α f

2 0 ≤ x ≤ l
2

(G1 J1+G2 J2
2 ) − (G1 J1−G2 J2

2 ) = αa −
α f

2
l
2 ≤ x ≤ l

(3)

αa thus represents the average value of the property, Similarly α f represents the fluctuating
value of the property. Along similar lines, for Φ(x) we have

Φ(x) =

 (ρ1 J1+ρ2 J2
2 ) + (ρ1 J1−ρ2 J2

2 ) = Φa +
Φ f

2 0 ≤ x ≤ l
2

(ρ1 J1+ρ2 J2
2 ) − (ρ1 J1−ρ2 J2

2 ) = Φa −
Φ f

2
l
2 ≤ x ≤ l

(4)

Equation (2) can thus be written as :

(αa +
1
2
α f )

d2Θ

dx2 + (Φa +
1
2

Φ f )Θ(x)ω2 = 0 for 0 ≤ x ≤
l
2

(αa −
1
2
α f )

d2Θ

dx2 + (Φa −
1
2

Φ f )Θ(x)ω2 = 0 for
l
2
≤ x ≤ l

(5)

Next, we introduce a non-dimensional variable ζ = πx
l , Note the functions Φ and α are

periodic with a periodicity of π in ζ. Eq. (5) is thus non-dimensionalized to the following

d2Θ

dζ2 + 1
2Θ(ζ) = 0 for 0 ≤ ζ ≤

π

2
(6a)

d2Θ

dζ2 + 2
2Θ(ζ) = 0 for

π

2
≤ ζ ≤ π (6b)

where,

β1
2 =

δ + ε

1 + 1
2γ

, β2
2 =

δ − ε

1 − 1
2γ

,

δ =
Φal2ω2

π2αa
, ε =

Φ f l2ω2

π2αa
, γ =

α f

αa

(7)



2.1.1 Transfer matrix Derivation

We seek solution of Eq. (6a) and Eq. (6b) as the superposition of two waves namely :-
(1) travelling along +ζ (2) travelling along −ζ

Θ (ζ) =

{
A1ei1ζ + A2e−i1ζ for 0 ≤ ζ ≤ π

2
B1ei2ζ + B2e−i2ζ for π

2 ≤ ζ ≤ π
(8)

Considering the unit cell in Fig. 1. The twisting moment M∗(ζ) is non-dimensionalized
with respect to parameter αa along ζ-direction in the region {1} as:

M∗(ζ) = (1 +
1
2
γ)

dΘ

dζ
(9)

In the transfer matrix method, state vectors at ζ = nπ
2 , n = 0, 1, 2, . . . are defined. The

state vector φ(ζ) comprises the non-dimensional angular displacement Θ(ζ) and the non-
dimensional twisting moment M∗(ζ) in the ζ-direction. The transfer matrix establishes a
relation between state vectors at ζ = nπ

2 and state vectors at ζ =
(n+1)π

2 . In the following,
the transfer matrix relating the state vectors at ζ = 0 and ζ = π

2 is derived. To derive the
expressions of the transfer matrix element, angular displacement and moment are written
in the matrix form as ζ → 0 from the right. Using Eq. 8 and Eq. 9, we have

{φ(0+)} =

{
Θ(0+)
M∗(0+)

}
=

[
1 1

i1(1 + 1
2γ) −i1(1 + 1

2γ)

] {
A1

A2

}
= [C]

{
A1

A2

} (10)

Similarly,
{φ(

π

2

−

)} =

{
Θ(π2

−)
M∗(π2

−)

}
= [C]

[
ei1 π2

− 0
0 e−i1 π2

−

] {
A1

A2

}
(11)

Using Eq. (10) in Eq. (11), we get{
Θ(π2

−)
M∗(π2

−)

}
= [C][P][C]−1

{
U(0+)
f ∗(0+)

}

= [T1]
{

U(0+)
f ∗(0+)

} (12)

Here T1 = CPC−1 is the transfer matrix relating the state vectors between the left end and
the right end of the region 0 < ζ < π

2 . Similarly T2 is obtained for the region π
2 < ζ < π.

Thus, we have
{φ(

π

2

−

)} = [T1]{φ(0+)} , {φ(π−)} = [T2]{φ(
π

2

+

)}

Employing the continuity condition at ζ = π
2 , we have φ(π2

+) = φ(π2
−). Thus, the state

vectors at ζ = 0+ and ζ = π− are related through the following transfer matrix :

{φ(π−)} = [T2]{φ(
π

2

+

)} = [T2]{φ(
π

2

−

)}

= [T2][T1]{φ(0+)} = [T (δ, ε, γ)]{φ(0+)}
(13)

Note, the transfer matrix T relating the state vectors of the unit cell is dependent on δ, ε
and γ. According to Floquet-Bloch theorem [10],

{φ(ζ + π)} = eµ{φ(ζ)} ⇒ {φ(π+)} = eµ{φ(0+)} (14)

Using Eq. (14) and Eq. (13) the following eigenvalue problem is formulated as
[T (δ, ε, γ) − Iλ]{φ(0+)} = 0, where, λ = eµ and µ is the propagation constant.



3. EIGENVALUE MAP

The transfer matrix T derived in section 2.1.1 is a symplectic matrix [11]. As a result
of that the two eigenvalues of T occur in pair as λ and 1

λ
. These eigenvalues can be

determined for the given value of the parameters, δ, ε, and γ . As studied by mead [12],
there are two possibilities for the eigenvalues :- (a) the eigenvalue pair is a set of complex
conjugates lying on the unit circle (b) the eigenvalue pair is real with one lying inside and
the other lying outside the unit circle. These are schematically illustrated in Fig. 2. the
attenuation band and pass-band characteristics can be determined that are associated with
each of these cases, If the eigenvalues lie on the unit circle of the complex plane viz.|λ| = 1,
then the corresponding parameters lie within a pass-band region. The real eigenvalues
correspond to the stop band region. For a given a material combination γ is fixed, with
δ and ε turning out to be frequency dependent parameter. The frequency associated with
either a propagation band band or an attenuation band cab be identified using δ and ε.
Thus for a given γ we construct an eigenvalue map for the transfer matrix for a range of
δ-ε values. The eigenvalue which lies in the pass band region are shown in grey and the
complimentary region is shown in white. Using this convention the eigenvalue map is
generated for different case in the subsequent section. More details can be found in [13]
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Figure 2: Eigenvalues of the transfer matrix of the periodic torsional rod (a) conjugate
pair lying on the unit circle in the complex plane (b) & (c) lying on the real axis.

3.3.1. Effects of variation in inertial properties of the unit cell

The eigenvalue map for γ = 0 is presented which stands for same torsional stiffnes on
either side of the unit cell Fig. 1. From Eq. (7), we have

ε

δ
=

Φ f

Φa
= ξ (15)

As per Eq. 7, δ and ε are both function of ω . The locus of ε − δ points in the parameter
space is a straight line. These lines are defined as ω-lines for the subsequent discussion.
Using the method as described in section 3, for γ = 0, we evaluate the eigenvalues of the
transfer matrix T for the different values of ε and δ. The regions of ε and δ parameter
space are shown in grey for which the eigenvalues lie on the unit circle. These parameter
space is identified as propagating zone whereas the complimentary zone is identified as
attenuation zone. The ω-lines given by Eq. 7 alternatively intersect the propagation and
attenuation zones. The frequency bands are evaluated by noting the intersection points



Table 1: Co-ordinates-of the intersection points of the eigenvalue map in Fig. 3 with the
ω-line corresponds to ε/δ = 1

Points δ ε Ω

a .747 .747 2.71
b 1.42 1.42 3.74
c 3.78 3.78 6.10
d 4.88 4.88 6.94

of the line with white regions and is shown in Table 1. The associated non-dimensional
frequency can be evaluated as

ω =

√
δπ2αa

Φal2 ⇒ Ω =
ωl√
αa
φa

= π
√
δ (16)

From eigenvalue map of Fig 3, it is easy to see that increase slope of ω line is favourable

(a) (b)

Figure 3: (a) Eigenvalue map of a bi-material unit torsional rod with identical stiffness
between adjacent regions (γ = 0 ) (b) Enlarged view of the same for mass moment of
inertia ratio ε

δ
= 1. The white and grey region in the ε − δ parameter space represents

stop band and pass band characteristics, respectively.

for having maximal frequency in the attenuation region. Henceforth the values of (Φ f

Φa
) can

be chosen to be maximum. However for the mass function Φ(x) > 0 within the unit cell,
the slope needs to satisfy the condition Φ f

Φa
< 2 . The limiting value of Φ f

Φa
→ 2− results in

best attenuation characteristics of the structure. The non-dimensional frequency of first
four band gap is presented in Table 2

3.3.2. Change of stiffness and inertia

In this section the effect of simultaneous variation of stiffness and inertial properties
within the unit cell is investigated. Similar to the analysis in section 3.3.1 the eigenvalue
map for different values of γ over the ε − δ parameter space is developed. The range of
γ chosen is such that the stiffness function α(x) > 0 within the unit cell. This condition



Table 2: Non-dimensional frequencies corresponding to the stop-bands for bi material
periodic torsional rod with optimal mass moment of inertia ratio ξ = 2− and uniform
stiffness γ = 0.

1st
Band

2nd
Band

3rd
Band

4th
Band

% Stop
Band

2.443-
4.443

5.739-
8.891

9.696-
13.348

13.910-
17.818 71.31

Table 3: Non-dimensional frequencies for the stop band of a bi-material rod for optimal
choice of mass moment of inertia ratio ( ξ = 2− ) and stiffness ratio ( γ = 2−). The results
are obtained using eigenvalue map (EVM) & Finite element method (FEM).

Methods
1st
Band

2nd
Band

3rd
Band

4th
Band

EVM
.002-
6.26

6.30-
12.54

12.58-
18.83

18.87-
25.12

FEM
.002-
6.26

6.30-
12.54

12.58-
18.83

18.87-
25.12

implies that 0 < γ < 2 refer Eq. 3. The eigenvalue map for γ = .5, 1, 1.5, 1.9 is shown
in Fig 4. As shown earlier in section 3.3.1 that optimal ω lines has a slope of 2−. These
optimal ω lines are also overlaid in Fig. 4. It is observed from the figure that with increase
in γ the attenuation frequency bands widens. The widest frequency bands are viewed at
ξ, γ → 2−. Physically it implies that the inertial and stiffness characteristics of one region
of the unit cell is extremely high in comparison to other region.

3.3.3. Validation

The optimal unit cell synthesized in the previous section having the widest frequency
bands over the entire frequency range is considered. The band gap result of optimal
unit cell at ξ, γ → 2−is shown in Table 3. It is seen that 99 % of the frequency range
falls withing the attenuation region. The frequency bands can also be calculated using
an FEM- based method (as given in [14]). These result is also shown along side for the
optimal unit cell. It is noted that both the approaches are in excellent co-relation.

�

Figure 5: Finite bi-material periodic rod .
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Figure 4: Eigenvalue map of a bi-material periodic torsional rod for mass moment inertia
ratio ξ → 2− and different values of of stiffness ratio (γ). The white and the grey region in
the ε−δ parameter space represents stop band and pass band characteristics, respectively.
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Figure 6: Tip Response at A due to a harmonic base angular acceleration for (a) optimal
stiffness and mass ratio ξ, γ → 2− (b) sub-optimal ratio ξ, γ = 1 and (c) homogenous
material ξ, γ = 0.



3.3.4. Finite Periodic torsional Rod structure response

A finite periodic structure comprising of ten periodic unit cell exhibit similar
qualitative result as that of infinite periodic structure. For the purpose of demonstration
about ten periodic unit is considered 5. Three cases are considered, namely (a) the unit
cell with ξ, γ → 2− (b) the unit cell with ξ, γ = 1 (c) the unit cell with ξ, γ = 0, which
correspond to the homogeneous structure. The structure is subjected to harmonic angular
acceleration at the base. For the simulation of structure response the commercial software
ANSYS is used. The absolute angular displacement P(Ω) at the tip of the structure
is calculated for a range of frequencies and is shown in Fig. 6. The FRF shows that
the periodic structure designed using optimal unit cell, has very favourable attenuation
characteristics for all frequency ranges. Hence it has practical utility in designing
structure susceptible to broadband excitation.

4. CONCLUSIONS

In conclusion, it is shown that eigenvalue map (EVM) is very effective in arriving at the
optimal ratio of stiffness and mass to get maximal attenuation across frequency range. It is
also shown that optimal unit cell periodic structure induces maximal attenuation band gap
than any other homogeneous structure. The torsional band gap achieved can be effectively
be used in controlling broadband vibration in long shafts typically used in turbines and
marine engine. From design point of view, it is desirable to have the stiffness and mass of
one region of the unit cell to be much higher than the other region to achieve broadband
isolation. The optimal combination of mass moment of inertia and torsional stiffness
ratio can only be achieved in a limiting sense by appropriate choice of both material and
geometric parameter.
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