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ABSTRACT

Periodic structure is well known for its ability to reduce vibration and sound
transmission in stop-band. As an effective tool to calculate the band structure
of periodic structure as well as homogeneous structure, Wave Finite Element
method(WFE) has caught much attention since it was proposed. In this paper, WFE
is extended to calculate the sound transmission loss (STL) of an infinite periodic
panel. Unlike homogeneous structure, modeling of the unit cell of periodic structure
necessitates a sufficient number of elements inside the cell and integration of sound
pressure over cell surface. In order to verify this method, the STL through an
infinite homogeneous plate is calculated by analytical method and present method
respectively. The results obtained by the two methods have good agreement. Then
this method is applied to a periodic panel whose cell is made of three different
types of materials and a significant reduction of sound transmission is found in the
stop-band of the periodic panel.
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1. INTRODUCTION

Periodic structures are shown to exhibit interesting behaviors in stop-band. All waves
or a certain type of wave are attenuated in this special frequency band. Thanks to this
characteristic, periodic structures can serve as vibration and sound filters. The mechanism
of the former is related to attenuation of elastic wave propagation in solid and the latter
involves reduction of sound wave transmission.

As to vibration mitigation, the effect of periodic structures has been thoroughly studied
in the last twenty years. These studies have covered different configurations of unit cell
including periodically simply supported beam [1], cellular grids [2], perforated plates and
periodically rib-stiffened plate [3], sandwich panels with corrugated cores [4] and periodic
composite core [5].

The sound reduction property of periodic structures has attracted much attention
since the emergence of metamaterials which exhibit negative effective mass [6] and
higher sound transmission loss (STL) in band gaps [7]. Thus the calculation of STL
through periodic structures becomes a prerequisite for a thorough research on this topic.
Analytical methods including effective mass density method and plane wave expansion
method (PWE) are commonly used in the latest works of STL calculation through
periodic structures. PWE has been applied to thin plates with attached resonators in [8]
and [9], while effective mass density method has been used to treat the cases of thin
plate with periodic piezoelectric patches [10] and plate with lateral local resonators in
the presence of external mean flow [11]. A common requirement of these two methods
lies in the availability of wave propagation equation of the host plate. The treatment
of complex cases like sandwich or multi-domain unit cell will be a challenge for these
analytical methods.

Wave finite element method has been widely used to study the wave propagation in
homogeneous structure [12]. This method now extends to calculation of STL through
homogeneous structure. As the unit cell is modeled with finite element method, the
structure can be complex in the depth direction. The cases of thin plate (isotropic and
orthotropic) and sandwich have been studied by Jean-Loup Christen [13] with lumped
force and Yi Yang [14] with integrated force. Yi Yang also extends his method to multi-
layered structures with fluid layers [15] and cylindrical structures [16].

Unlike homogeneous structure, an important limitation of periodic structure is that the
unite cell is defined by physical problem and can not be changed to adapt to wave length.
As stated by Jean-Loup Christen and Mohamed Ichchou in [13], the element size will
influence the accuracy of result especially in high frequency part. If the cell size and
element size are kept linking, the requirement of physical problem and accuracy can not
be met at the same time. An adaption should be made to treat the case of bigger unit
cell which may contain several types of materials. Consequently, we propose to mesh
the unit cell with an adequate number of finite elements. The adequate number will be
determined by comparison to wave length. This will lead to unit cell with internal nodes.
The calculation of STL of a structure with unit cell including internal nodes has not been
treated by existing work.



2. MODELING OF SOUND TRANSMISSION THROUGH AN INFINITE
PERIODIC PLATE

2.1. Application of floquet-bloch theorem to unit cell with internal nodes

The unit cell of periodic structure is discretized by FEM and the governing equation is
written as:

([K] − ω2[M ]){q} = {f } + {e} (1)

where K and M are respectively the stiffness matrix and mass matrix; f is vector of
forces between cells; e represents external force (force imposed on the plate by acoustical
pressure in our case). The expression of force vector can be found in section 2.3.

q is a vector of DOFs of the unit cell and is divided into 9 parts according to the
following order:

{q} =
〈
qlb qrb qrt qlt qb qr qt ql qi

〉T
(2)

The division map is shown in figure 1.

Figure 1: The unit cell and distribution of DOFs

The whole DOFs of the unit cell can be reduced to the base {q̃} by applying floquet-
bloch theorem and continuity of displacements [17]:

{q} =



0 0 I 0
0 0 Ie−ikx4x 0
0 0 Ie−ikx4x−iky4y 0
0 0 Ie−iky4y 0
0 I 0 0

Ie−ikx4x 0 0 0
0 Ie−iky4y 0 0
I 0 0 0
0 0 0 I


{q̃} = [N(kx, ky)]{q̃} (3)

where
{q̃} =

〈
ql qb qlb qi

〉T
(4)

kx and ky are wave number along x and y direction, 4x and 4y are length and width of the
unit cell.



Multiply Equation (1) by the conjugate transpose of matrix N, we can obtain:

[NH(kx, ky)]([K] − ω2[M ])[N (kx, ky)]{q̃}

=[NH(kx, ky)]{f } + [NH(kx, ky)]{e}

=[NH(kx, ky)]{e}

(5)

where [NH(kx, ky)]{f } vanishes by applying again floquet-bloch theorem and equilibrium
of forces between cells.

As sound pressure is also harmonic in space and continuous between cells, the
treatment of {e} can be similar to displacement—i.e., {e} = [N (kx, ky)]{ẽ}. As a result,
[NH(kx, ky)]{e} = [NH(kx, ky)][N (kx, ky)]{ẽ} = 〈2el 2eb 4elb ei〉

t. Since we will
integrate sound pressure over cell surface and introduce directly distributed force, this
manipulation is currently not useful in our case but may interest other readers.

2.2. Incident plane sound wave, reflection and transmission

This subsection will be dedicated to sound transmission theory and deduction of
external force {e}.
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Figure 2: Incident plane wave, transmission and reflection

We consider a simple situation in which a plane wave is incident from air onto an
infinite periodic plate with elevation angle θ and azimuth angle φ. This oblique incident
plane wave interacts with the plate and creates reflected wave in this side and transmitted
wave in the other air half-space. As the fluid on the two sides is assumed identical, the z-
component of the wave vector will be same for both incident wave and transmitted wave.
Thus the incident, reflected and transmitted wave can be written as

PI = pIe(iωt−ikx x−ikyy−ikzz)

PR = pRe(iωt−ikx x−ikyy+ikzz)

PT = pT e(iωt−ikx x−ikyy−ikzz)

(6)

For the sake of simplicity, the term eiωt will be omitted in the following deduction.
According to the continuity of velocity on the interface of fluid and structure—i.e., the

upper and lower face of the infinite plate, we have:

−
1
ρ0

∂P1

∂z

∣∣∣∣
z=0

= iωv
∣∣∣∣
z=0

= −ω2W

−
1
ρ0

∂P2

∂z

∣∣∣∣
z=0

= iωv
∣∣∣∣
z=0

= −ω2W
(7)



where P1 represents the pressure field of the upper half-space and equals the sum of PI

and PR. While P2 represents the pressure field of the lower side and equals PT .
Substituting Equation (6) for P1 and P2, we can establish a relation between the

amplitudes of sound pressure and amplitude of transverse displacement of the plate:

1
ρ0

(−ikz pI + ikz pR)e(−ikx x−ikyy) = ω2w0e(−ikx x−ikyy) ⇒ pI − pR =
iρ0ω

2w0

kz

1
ρ0

(−ikz pT )e(−ikx x−ikyy) = ω2w0e(−ikx x−ikyy) ⇒ pT =
iρ0ω

2w0

kz

(8)

where w0 is the amplitude of the plate displacement.
The force imposed on the plate can be written as:

F = P1

∣∣∣∣
z=0
−P2

∣∣∣∣
z=0

= (PI+PR)
∣∣∣∣
z=0
−PT

∣∣∣∣
z=0

= (2pI−
2iρ0ω

2w0

kz
)e(−ikx x−ikyy) = 2pIe(−ikx x−ikyy)−

2iρ0c0ωW
cosθ

(9)

2.3. Finite Element discretization of the unit cell
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Figure 3: Schematic diagram of discretization of unit cell

The stiffness matrix, mass matrix and external force vector of the unite cell will be
obtained by finite element discretization. A schematic diagram of the discretization is
shown in figure 3.

As the kinetic energy and strain energy can be expressed in a common way, we focus
on the virtual work of the force imposed by sound pressure. According to Equation (9),
the discretizaiton of the terms pIe(−ikx x−ikyy) should be discussed firstly. This term can
either by integrated analytically or numerically. As this term vary the same way along x
and y with W, its distribution can be approximated by the shape function of W.

pIe(−ikx x−ikyy) = pI〈N 〉{p
e} (10)

where {pe} is a vector of nodal value of e(−ikx x−ikyy) which can be calculated directly before
integration.

The virtual work of the sound pressure can be written as:

δWs =

∫
A
δWFdA

=

∫
A
δW(2pIe(−ikx x−ikyy) −

2iρ0c0ωW
cosθ

)dA

= 〈qe〉2pI

∫
A
{N }〈N 〉dA{pe} − 〈qe〉

2iρ0c0ω

cosθ

∫
A
{N }〈N 〉dA{qe}

= 〈qe〉{ee} − 〈qe〉
2iρ0c0ω

cosθ
[M e

p]{qe}

(11)



Equation (11) indicates that the sound pressure in fact not only contributes to the vector
of force but also contribute to mass matrix. Besides the normal mass matrix derived from
kinetic energy, a supplementary part M e

p derived from virtual work of sound pressure
should not be ignored. As to ee, it is the force vector of an element. The force vector {e}
in section 2.1 can be easily derived by assemble process.

3. CASE OF AN HOMOGENEOUS PLATE-VALIDATION

Although the original goal of this method is to solve the problem of periodic structure,
the case of homogeneous plate can be used to verify this method.

We consider an infinite plate made of glass whose properties are E = 0.69×1011Pa, h =

0.005m, ν = 0.29, ρ = 2500kg/m3, η = 0.002. The fluids on the two sides are identical
and both air with density ρ0 = 1.29kg/m3 and wave speed c0 = 340m/s. A plane
wave is incident upon the plate with θ = 45◦ and φ = 0◦. The plate is discretized by
Kirchhoff plate element with 3 DOFs (w,w,x,w,y) on each node. The size of the unit cell
is 10mm*10mm.

The unit cell is meshed by 100*100 finite elements. The link between cell size and
element size has been broken, thus cell size can satisfy physical limitation and element
size can meet accuracy requirement. In figure 4, we can see that present method (marked
by 2) agrees well with the analytical solution.
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Figure 4: STL calculated by different methods: Analytical solution;2 Cell contains
100*100 elements, cell size 10mm*10mm (present method)

4. APPLICATION TO AN INFINITE PERIODIC PANEL

This method is applied to the case of an infinite periodic plate whose unit cell is made
of three types of materials (figure 5a). The properties and geometry of the different
domains are listed in table 1. The elevation angle θ is −54.7◦ and azimuth angle φ is
45◦.



length width thickness material E ν ρ
mm mm mm - Mpa - kg/m3

domain A 4 8 5 steel 200000 0.2 7800
domain B 6 10 5 rubber 0.12 0.47 1300
domain C 10 14 5 epoxy 4350 0.3679 1180

Table 1: Mechanical and geometric properties

The STL through this periodic plate is calculated with the present method and the result
is shown in figure 5b. In order to figure out the the relation between band gap and pics of
STL, the band structure is also calculated and shown in the same figure. We can see that
in the range of audible frequencies there are three band gaps. In each of band gap, the
STL raises steeply.
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Figure 5: Periodic plate, band structure and STL calculated by present method

5. CONCLUSIONS

A wave finite element method to calculate the sound transmission loss of infinite
periodic structure is presented in this paper. The adaption to bigger and multi-domains
unit cell which is common case for periodic structure, is realized by meshing the unit
cell with a sufficient number of finite elements and integration of sound pressure over the
whole unit cell surface. This method consists in extending the WFEM to the case of unit
cell with internal nodes. The accuracy of this method is demonstrated by comparison
with analytical solution of a homogeneous plate. In the application to an infinite periodic
panel, steep raises of STL has been found in each band gap, which agrees well with the
conclusion of other works.
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