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ABSTRACT 
A vibroacoustic numerical method employing a finite-difference time-domain 
(FDTD) method, in which the target floor structure consisting a floor panel 
supported by support legs on a floor slab is modeled as a composition of two-
dimensional plate elements for the double plate structure and one-dimensional bar 
elements for the support legs, is proposed. While floor impact sound is difficult to 
accurately predict owing to the complexity of the vibroacoustic mechanism 
influenced by the coupling phenomena with the vibration of the double-plate 
structure con-nected by support legs and the sandwiched air layer between the 
double plates. In this paper, the basic theory of the proposed numerical scheme was 
validated through comparison with excitation test on an acrylic scale model. 
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1. INTRODUCTION 

The vibroacoustic transmission characteristics of the floor impact sounds are 
greatly influenced by the vibration of the dry double floors and the suspended ceiling 
systems installed above/under the slabs as well as that of the floor slabs. Furthermore, the 
acoustic resonance phenomena in the narrow airspaces under the double floors or above 
the ceiling boards also affects the transmission characteristics of the sound. To predict 
such structure-borne sound transmission, for example, the energy-based method such as 
the statistical energy analysis method [1] has been applied to the vibroacoustic simulation. 
In contrast, the wave-based numerical analysis has also been gradually applied to such 
fields. Among the wave-based methods, the finite-difference time-domain method 
(hereafter called FDTD) has been widely applied in the fields of electromagnetics [2], 
seismology [3], elastodynamics [4], acoustics [5]. To simulate the vibration propagation 
by FDTD, the elastic wave analysis is available; however three-dimensional modelling 
of the objects by the analysis requires higher computational costs. To reduce the costs, 
FDTD modelling of the plate-like and/or rod-like structures by using 2-diemnsional plate 
elements [6] and/or 1-dimensional beam elements [7] has been investigated. By using this  
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method, relatively costless vibroacoustic simulation of building structures is possible. The 
validity of the predicted results by the method has been confirmed in some case studies 
[8] aiming at application to real building structures; however the application of the 
method to the prediction of the insulation performance through double-plate structures 
such as the dry double floors and the suspended ceilings has not been investigated. In this 
paper, a basic study that aims validation of the proposed FDTD scheme on the vibration 
simulation of double-plate structures connected by elastically supported bars are 
performed. The numerical results obtained by the proposed method are validated through 
comparison to the results of excitation tests on acrylic models. 

 
2.  THEORY OF FDTD ANALYSIS 

The proposed numerical scheme simulates planar structures like floor boards and floor 
slabs by using the 2-dimensional plate elements, and the bar-shaped structures like the 
floor support legs supporting the floor boards on the slab by using the 1-dimensional bar 
elements. Firstly, the governing equations of vibration for plate and bar elements are 
described as follows. The following equations respectively describe in order, the bending 
wave propagation on the plate in the x-y plane, the in-plane wave propagation on the bar 
in the x direction: 
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where w is the displacement of the out-of-plane deformation of the plate; u is the 
displacement of the in-plane deformation of the bar; g is the gravitational acceleration;  
and  are coefficients for modeling the damping characteristics of the bending 
deformation; pp1 and pp2 are the external forces acting on the plate; and D is the flexural 
rigidity (). The other coefficients, E, , h, , and A, are Young’s modulus, the density, the 
thickness of the plate, Poisson’s ratio, and the cross-sectional area of the bar, respectively. 
In this simulation method, the jumping of the objects is included by considering the effect 
of the gravity acted on the simulated object. The damping characteristics of the bending 
vibration using Eq. (1) are simulated by setting appropriate values of  and  [6] for the 
acrylic planar material.  

The basic model of the simulated double-plate structure is shown in Fig. 1(a). The 
vibration transmission characteristics of the structure composed of the thick plate 
structure (a.1), and the thin plate structure (a.2) supported by multiple support legs (a.3) 
are simulated. In this model, (a.2) and (a.3) are rigidly connected whereas (a.3) are not 



affixed to (a.1), and the structure composed of (a.2) and (a.3) are simply put on (a.1). The 
vibration characteristics of the connecting part between (a.1) and (a.3), and (a.2) and (a.3) 
are modeled by following scheme. 

Figure 1(b) and (c) show a discrete model composed of two plate elements and one bar 
element which are connected by springs. Then the plate element of Plate 1 and the bar 
element are elastically connected by the spring whereas that on Plate 2 and the bar element 
are rigidly connected. Each of the vibration of the plate / bar element is calculated 
following the numerical scheme in [6] / [7]. In contrast, the physical relationship between 
the bar and plate element, and the connecting spring can be modeled by considering 
following continuity conditions.  

Firstly, the boundary conditions on the lower / upper sides of the supporting leg as 
shown in Fig. 1(c) are given as Eqs. (3) / (4). As indicated in Eq. (3), the resistance force 
caused by the spring are acted upon the lower-side boundary of the bar. On the other hand, 
in Eq. (4), the displacement at the upper-side boundary of the bar equals to that of the 
connected element of Plate 2.  
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  Secondly, the pP1 and pP2 in the following equations which indicate the acted forces upon 
the Plate 1 and 2 by the spring or bar are substituted into the term of the external force 
pP1/P2 in the right side of Eq. (1).  
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Herein, the resistance force of the spring, pP1, is acted on the element of Plate 1 whereas 
the axial force of the support leg, pP2, is acted on that of Plate 2. Note that the parameter 
p indicates the external forces other than the abovementioned force of pP1/P2 such as the 
excitation force by the impact hammer.  

  Lastly, the jumping of the simulated object composed of the thin plate structure (a.2) 
and the support legs (a.3) in Fig. 1(a) caused by reaction to such an external force as the 
impulsive hammering are considered as follows. The spring constant k of the elastic 
connection parts of Fig. 1(b) is set as supk k  if 1

1 , 0i ju w  , whereas that is set as 0k   

if 1
1 , 0i ju w  . Herein, the given value of ksup is indicated in the next chapter. The 

conditional update of the abovementioned parameters means that the spring works only 
when the spring is in compressed condition whereas that does not work in the tensile 
condition.  

  The time development of the vibration is calculated by step-by-step using the discrete 
equations composed of the basic equations Eq. (1), (2), and the continuity conditions of 
Eq. (3), (4), (5) and (6). 

 



3.  CASE STUDY 
3.1 Numerical and Experimental Setup 

An excitation test is performed on the acrylic box model of Fig. 2(a). The acrylic 
box has dimensions of 960 mm(W)×760 mm(D)×1200 mm(H), and that is made of 20-
mm-thick acrylic plates which are rigidly connected with each other by welding. At the 
height of 590 mm from the under edge of the box, a partition panel is installed inside the 
box. In this study, two measurement conditions of Type 0 and 1 of Fig. 2(c) are 
investigated. Type 0 is the measurement condition to obtain the vibration of only the box 
whereas Type 1 is that of the box including the thinner plate with support legs. In Type 
1, 5-mm-thick acrylic plate with dimensions of 600 mm(W)×600 mm(D) is put on the 
partition panel supported by 25 pieces of support legs as shown in Fig. 2 (b). The support 
legs are arranged at 100 mm intervals, and they contact with the 20-mm-thick partition 
plate through rubber pieces. The excitation points are set at S shown in Fig. 2(b) and (c) 
whereas the receiving points are set at R (Type 0) or R1 and R2 (Type 1), respectively. 
The excitation point S is stuck by an impulse hammer (PCB, 086C02), and the vibration 
accelerances at each point are measured. Quantitatively comparing the measurement and 
calculation results, the accelerance is transformed into the accelerance level which is 
normalized by the excitation force. In the simulation, the Young’s modulus, density, 
Poisson’s ratio of acrylic plate is set as 5.6×109 N/m2, 1,150 kg/m3, 0.3, respectively. The 
spring constant ksup of the rubber pieces having rubber hardness of 55 deg. is set as 90 
N/mm. The discrete spatial and time intervals are set to be x = y = 10 mm and t = 
1/48,000 s, respectively. As the external force, a waveform simulating the acted external 
force of the measurement by using the Gaussian function is given. An example of the 
correspondence between the measured and modeled waveform of the force is shown in 
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Fig. 3 Example of the input force by impulse hammer, and the simulated waveform of the acted exterior force in the FDTD calculation.



Fig. (3). The accelerance at each receiving point is calculated, being compared to that of 
the measurement.  

 
3.2 Results and Discussion 

 First, the snapshots of the deformation of the simulated model obtained by the 
proposed FDTD calculation are shown in Fig. 4, where the gray scale represents the 
displacement of each plate and bar element. The amplitudes of the displacements are 
multiplied by 10,000. The edge part of the supported thin plate vibrates freely whereas 
the bending vibration of the plate is restrained by the support legs especially in the midpart.   

Next, the quantitative results of the measured and calculated accelerance level are 
shown in Fig. 5 and 6. Figure 5 shows the vibration characteristics of Type 0. In the figure, 
the results of the measurement and calculation are in good agreement. Figure 6 shows the 
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Fig. 5 Comparison of the measurement and calculation results of Type 0.



vibration characteristics of Type 1. Figure 6(a) indicates the vibration characteristics of 
the thin plate structure (source: S, receiver: R1), and 6(b) indicates those of the vibration 
transmitted to the thick plate structure (source: S, receiver: R2). The frequency 
characteristics of the measurement results are also well described by the calculation while 
the correlation between the measured and calculated results are slightly degraded 
compared to that of Fig. 5.  

Firstly, the reason for the relatively lower correlation of Type 1 is due to more 
complicated structure model composed of the main structure of Type 0 and the 
additionally installed thin plate structure. Secondly, comparing the results of R1 and R2 
in Type 1, the latter case indicates slightly lower correlation coefficient because that 
mainly includes the vibration transmission characteristics via the thin plate structure 
which is influenced by the nonlinear vibration propagation between the thick plate and 
the multiple support legs. However, a significant decrease of the simulation accuracy is 
not generally seen in the numerical results. As a result of the abovementioned agreement 
between the measurement and calculation, the basic validation of the proposed method is 
confirmed. 

 
4.  CONCLUSIONS 

 A vibration simulation method that simulates the target structure as a combination 
of the two-dimensional plate elements and one-dimensional bar elements is proposed. 
The proposed method is validated through comparison to an excitation test on an acrylic 
structure. The frequency-domain results obtained by the calculation agree well with the 
measurement. The correspondence of the measured and calculated results verified the 
applicability of the proposed method. 
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