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ABSTRACT 

Acoustic resonances of open cavities could cause not only noise problems but also 

damages to structures. When using the finite element method (FEM) to do the 

resonance analysis of open cavities, the infinite domain outside the cavities has to be 

truncated, which could bring difficulties to the numerical analysis and also errors to 

the numerical results. In order to avoid the truncation of the infinite domain and 

improve the accuracy of the numerical results, this paper presents a boundary 

element method (BEM) for the acoustic resonance analysis of open cavities. The 

resulting eigenvalue problem in the BEM is a nonlinear one which is difficult to solve, 

and thus a contour integral method is employed in this paper to convert it into an 

ordinary linear one. To filter out the fictitious eigenfrequencies generated by the 

BEM for exterior problems, a scheme based on the combined boundary integral 

formulation is presented. Some numerical examples are given to verify the accuracy 

and validity of the present method. 
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1. INTRODUCTION 

Acoustic cavity resonance could cause not only noise problems but also damages to 

structures, which makes it important to help control noise radiated or scattered from 

structures [1, 2]. Modal analysis of closed acoustic cavities can be easily implemented 

using the finite element method (FEM) [3]. But for open cavities, the infinite domains 

outside the cavities usually have to be truncated in the FEM. Koch [4] simulated the 

infinite domain by arranging a Perfectly Matched Layer (PML) [5], and used the FEM to 

do resonance analysis of open cavities. However, the PML method has some 

shortcomings, for example, the computational domain is enlarged considerably by the 

unphysical PML region, and thus requires larger solution vectors. Also, the parameters in 

the method affect the efficiency and accuracy of the method. 
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In order to avoid the truncation error of the infinite domain and improve the accuracy 

of numerical results, this paper presents a boundary element method (BEM) for the 

acoustic resonance analysis of open cavities. However, since the coefficient matrices of 

the BEM system of equations involve the frequency implicitly, the original eigenproblem 

for the Helmholtz equation turns into a nonlinear eigenproblem (NEP) which is difficult 

to solve. In this paper, a contour integral method called the block Sakurai-Sugiura (SS) 

method [6] is adopted to solve the resulting NEP. In the block SS method, a NEP is 

converted into a generalized eigenproblem whose dimension is much smaller than the 

original one, and the conversion is achieved readily by solving a set of common BEM 

systems of equations. The method is implemented in the complex domain, consequently 

it can also extract the eigenvalues with imaginary parts. However, as is well-known that 

the BEM based on the Kirchhoff-Helmholtz boundary integral equation suffers from the 

fictitious eigenfrequency problem [7, 8]. In the BEM eigenvalue analysis, fictitious eigen-

frequencies usually emerge along with the resonant frequencies of the problem. In order 

to filter out such ficitious eigenfrequencies, a scheme based on the combined boundary 

integral formulation which is called the Burton-Miller formulation in the BEM response 

analysis of exterior acoustic problems [9] is presented in this paper. 

The remainder of this paper is organized as follows. In Section 2, the BEM 

formulations for acoustic problems are reviewed and a boundary element eigensolver 

based on the contour integral method is developed to do the modal analysis of acoustic 

open cavities. Numerical examples including a unit circle and a circle with a rectangular 

cavity are given in Section 3 to show the accuracy and effectiveness of the method. 

Section 4 concludes the paper with further discussions. 

 

2. THEORY 

 

2.1 BEM formulations  

Time-harmonic exterior acoustic problems are considered in this paper. Given a 

harmonic time dependence i te  , the differential equation governing the steady-state 

linear acoustics is the Helmholtz equation 
2 2( ) ( ) 0p k p  x x ,                                                (1) 

where ( )p x  is the complex sound pressure at point x  inside the exterior domain S , 2  

is Laplace’s operator, /k c  is the wave number,   is the circular frequency and c  is 

the speed of sound in the undisturbed medium. 

Eq. (1) can be reformulated into a Kirchhoff-Helmholtz boundary integral equation 

defined on the structural boundary   as follows: 

( ) ( ) ( , ) ( )d ( ) ( , ) ( )d ( ) 0c p q p p q 

 
     x x x y y y x y y y ,                  (2) 

where the coefficient ( )c x  depends on the geometry of boundary   at point x . It is 1/2 

when x  is located on a smooth part of the boundary. ( , )p
x y  the fundamental solution 

of the Helmholtz equation, ( )q y  and ( , )q
x y  the normal derivatives of ( )p y  and 

( , )p
x y , and y  the field point. For 2D acoustic problems, we have 
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where r  x y , ( )n y is the normal direction on the boundary at the point y , (1)
0H  and 

(1)
1H are first kind Hankel functions of the zeroth and first order, respectively.  



The boundary conditions (BC) on   can be classified into the Dirichlet BC when the 

sound pressure is known, the Neumann BC when the normal particle velocity is known 

and the impedance BC when the acoustic impedance is given on the boundary. 

In this paper, Eq. (2) is referred to as the conventional boundary integral equation 

(CBIE) and it can be utilized to calculate the unknown boundary values. However, the 

BEM based on it suffers from the fictitious eigenfrequency problem when solving exterior 

acoustic problems. In the BEM eigenvalue analysis, such fictitious eigenfrequencies can 

also be obtained. In order to filter them out, a scheme based on the combined integral 

formulation which is called the Burton-Miller formulation in the BEM response analysis 

of exterior acoustic problems [9] is given in this paper. 

The normal derivative boundary integral equation (NDBIE) is obtained by taking the 

normal derivative of Eq. (2) at the point x  as  

( ) ( ) ( , ) ( )d ( ) ( , ) ( )d ( ) 0c q q p p q 

 
     x x x y y y x y y y ,                  (5) 

where ( , )p
x y  and ( , )q

x y  are the normal derivatives of ( , )p
x y and ( , )q

x y  at point 

x , respectively. 
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where (1)
2H  is first kind Hankel functions of the second order, in  is the Cartesian 

component of the vector ( )n x  or ( )n y , and the Einstein summation convention is used 

here, so repeated indices imply summation over their range. 

Combining the CBIE and NDBIE, the integral equation for the Burton-Miller’s 

method can be written as follows, 
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where   is the coupling coefficient of the Burton-Miller’s method. Discretizing Eq. (8) 

by collocation method allows us to formulate the system matrices H  and G  as 

( ) ( , ) ( , ) d ( )ij

i ij i iH c q q  


     x x y x y y ,                            (9) 

( ) ( , ) ( , ) d ( )ij

i ij i iG c p p  


      x x y x y y ,                         (10) 

where ij  is the Dirac delta function. 

Then, the system of equations can be obtained as 

0Hp Gq = .                                                         (11) 

By applying the BC and rearranging the unknowns to the left hand side, the final BEM 

system of equations can be obtained. Because the coefficient matrices of the BEM system 

of equations involves the wave number implicitly, we obtain a NEP in the BEM 

eigenvalue analysis to find the eigenpairs to satisfy 

( ) 0j jkA x = ,                                                     (12) 

where A  is the coefficient matrix, ( , )j jk x  are the eigenpairs which satisfy Eq.(12). In 

general, it is not an easy task to solve such a NEP, so that different methods have been 

developed in the past decades. Next, a recently developed contour integral approach 

proposed in [6] is introduced to form a boundary element eigensolver for the resonance 

analysis of open acoustic cavities. 

 

 



2.2 Boundary element eigensolver based on the contour integral method 

In this section, a contour integral method called the block SS method [6] is introduced 

to solve the resulting NEP of the BEM. The method is a projection method which can 

extract eigenvalues inside a region bounded by a closed Jordan curve. In this method, we 

first form the following matrix: 

-11
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2 i

r H
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 M V A( ) V ,                                        (13) 

where C  is a closed Jordan curve in the complex plane, =r 0,1, , 2 1K  , K  are 

positive integers, (.)H
 denotes the conjugate transpose, n LV  is an arbitrary nonzero 

matrix, 
n nz A( )  is the coefficient matrix of Eq. (12), n  is the number of degrees of 

freedom of the problem and L  should be superior to the maximum algebraic multiplicity 

of the eigenvalues lying inside C . In addition, KL m  and m  is the number of 

eigenvalues lying inside C . 

Then two Hankel matrices 1H  and 2H  can be formed by using the matrices rM  

1 2 , 1

K

j r j r  
   H M ,                                                 (14) 

2 1 , 1

K

j r j r  
   H M .                                                 (15) 

By calculating the eigenvalues of the matrix pencil 2 1kH H , the eigenvalues jk  and 

the eigenvector jw  located in the closed curve C  can be obtained. After obtaining the 

eigenvalue of the matrix pencil, the eigenvectors for the original NEP can be calculated 

by 

, 1,2, ,j j j m x Sw ,                                           (16) 

where  0 1 1, , , KS S S S , and  
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In the numerical eigenvalue analysis, the contour integrals in Eqs. (13) and (17) can 

be calculated numerically by using the N-point trapezoidal rule. If we use a circular 

integral path  0 2C iz e        , the matrices can be calculated numerically as 
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where 
i jC

jz e


    and   2 / 1/ 2j N j   . 

Thus, after obtaining the shifted and scaled eigenvalues j , the original eigenvalues 

jk  can be recovered by 

=j jk   .                                                      (20) 

In order to calculate the eigenvalue 
jk  and the eigenvector jw  for the matrix pencil 

2 1kH H , we utilize the singular value decomposition (SVD) on the 1H  to obtain 

1

HH UΣW ,                                                     (21) 

where , KL KLU W  are unitary matrices,  1 2diag , , , KL  Σ  and 1 2, , , KL    

are nonnegative real numbers in descending order. Let   be a positive threshold value 

and omit the small singular values 1 1m    . 

The original NEP is now converted into an ordinary linear eigenproblem for finding 

the eigenpairs ( , )j j y  of the matrix  3 1: ,1:m m mH H , where 1
3 2

H H U H WΣ .  



After obtaining the eigenpairs ( , )j j y  of 3H , the eigenvalues jk  can be recovered by 

Eq. (20). The eigenvectors jx  for the original NEP can be calculated by  
1 , 1,2, ,j m m j j m x SW Σ y .                                       (22) 

Furthermore, we have to calculate 
-1

A V for a set of complex wave numbers along the 

integration path C  in Eqs. (18) and (19). Instead of evaluating -1
A , the following system 

of equations can be solved as: 

AX V ,                                                         (23) 

where , n LX V . The solution of Eq. (23) is still very expensive in the conventional 

BEM and can be accelerated by using the techniques like the H-matrix method [10] to 

improve the computational efficiency. 

 

3. NUMERICAL EXAMPLES 

Numerical examples are presented in this section to demonstrate the accuracy and 

efficiency of the proposed method for calculating acoustic resonance frequencies of open 

cavities. The medium of the acoustic field is air with density of m = 1.20 kg/m3 and the 

sound speed of c = 340.0 m/s. All integrals in the BEM are evaluated numerically through 

the 10-point Gauss-Legendre quadrature rule. 
 

3.1 A unit circle example 

A unit circle with the origin of coordinates at its center is taken as the first example in 

this section. From the general solution of the problem, the analytical eigenvalues are 

determined by the roots of '( ) 0nH k   for the Neumann BC [1]. The multiplicity of the 

eigenvalues is 2. In the numerical eigenvalue analysis, the circumference is divided into 

360 constant elements. The contour integral path C  is defined as a circle with = (5.1, 

0), = 3.0 and the parameters in the block SS method are set as N 512, K 5, L 15 

and  10-10. 

The CBIE and the combined boundary integral formulation are used and the coupling 

parameter in the combined boundary integral formulation is set as i / k   [7]. Relative 

errors Re  and Im  are defined as 

Re
[Re( ) Re( )] / Re( )

n a a

i i i
k k k   ,                                       (24) 

Im
[Im( ) Im( )] / Im( )

n a a

i i i
k k k   ,                                       (25) 

where a
ik  and n

ik  denote the analytical solution and the numerical result, respectively. 
The numerical results for the unit circle are given in Table 1, where the symbol   in 

top right of a number denotes the fictitious eigenvalue. It is noted that the eigenvalues of 

CBIE in Table 1 are divided into two categories, and one of them contains the eigen-

values with large negative imaginary parts, which are the actual eigenvalues of the 

problem. When considering the acoustic resonance problems in the external field, the 

energy is transmitted to infinite, which leads to the acoustic radiation damping and 

represents by the negative imaginary parts of the complex eigenvalues [11]. In addition 

to the actual eigenvalues, another group of eigenvalues which have very small imaginary 

parts are the fictitious eigenvalues introduced by using the BEM based on the CBIE. 

In Table 1, ‘---’ indicates that the data do not exist since the analytical fictitious 

eigenvalues have no imaginary parts and the error cannot be calculated. It can be observed 

from Table 1 that the numerical results agree very well with the analytical eigenvalues, 

and the multiplicity of the eigenvalues can also be obtained. It is also observed that the 

fictitious eigenvalues have been removed from the real axis to the complex plane with 

positive imaginary parts. Since the actual eigenvalues of interest are the complex number 



with negative imaginary parts, it makes us very easy to filter out the fictitious eigenvalues 

after using the the combined boundary integral formulation. 

 

Table 1. Numerical eigenvalues for the unit circle. 

i  
CBIE BM 

n
ik  Re  Im  

n
ik  Re  Im  

1 2.37391-0.96755i 2.5E-05 1.6E-05 2.37392-0.96755i 2.4E-05 1.6E-05 

2 2.37391-0.96755i 2.5E-05 1.6E-05 2.37392-0.96755i 2.4E-05 1.6E-05 

3 2.40491+1.1×10-7i* 3.6E-05 --- 2.98059+1.27956i* 2.4E-01 --- 

4 3.32218-1.07277i 3.1E-05 2.2E-05 3.32218-1.07276i 2.9E-05 3.5E-05 

5 3.32218-1.07277i 3.1E-05 2.2E-05 3.32218-1.07276i 2.9E-05 3.5E-05 

6 3.83185-6.1×10-6i* 3.7E-05 --- 4.35902+1.49106i* 1.4E-01 --- 

7 3.83185-6.1×10-6i* 3.7E-05 --- 4.35902+1.49106i* 1.4E-01 --- 

8 4.27703-1.16123i 3.5E-05 1.7E-05 4.27703-1.16119i 3.2E-05 5.0E-05 

9 4.27703-1.16123i 3.5E-05 1.7E-05 4.27703-1.16119i 3.2E-05 5.0E-05 

10 5.13581-2.6×10-5i* 3.8E-05 --- 5.47955+1.57806i* 6.7E-02 --- 

11 5.13581-2.6×10-5i* 3.8E-05 --- 5.47955+1.57806i* 6.7E-02 --- 

12 5.23683-1.23831i 4.1E-05 6.1E-06 5.23681-1.23824i 3.7E-05 6.4E-05 

13 5.23683-1.23831i 4.1E-05 6.1E-06 5.23681-1.23824i 3.7E-05 6.4E-05 

14 5.52028+5.8×10-7i* 3.8E-05 --- 6.17563+1.61832i* 1.2E-01 --- 

15 6.20045-1.30708i 4.7E-05 1.4E-05 6.20043-1.30696i 4.3E-05 7.6E-05 

16 6.20045-1.30708i 4.7E-05 1.4E-05 6.20043-1.30696i 4.3E-05 7.6E-05 

17 6.38039-6.2×10-5i* 3.7E-05 --- 6.57462+1.53575i* 3.0E-02 --- 

18 6.38039-6.2×10-5i* 3.7E-05 --- 6.57462+1.53575i* 3.0E-02 --- 

19 7.01585-5.4×10-6i* 3.8E-05 --- 7.63120+1.73656i* 8.8E-02 --- 

20 7.01585-5.4×10-6i* 3.8E-05 --- 7.63120+1.73656i* 8.8E-02 --- 

21 7.16712-1.36946i 5.5E-05 3.6E-05 7.16709-1.36928i 5.0E-05 9.2E-05 

22 7.16712-1.36946i 5.5E-05 3.6E-05 7.16709-1.36928i 5.0E-05 9.2E-05 

23 7.58861-1.2×10-4i* 3.7E-05 --- 7.70618+1.46837i* 1.6E-02 --- 

24 7.58861-1.2×10-4i* 3.7E-05 --- 7.70618+1.46837i* 1.6E-02 --- 

 

3.2 A circular model with a rectangular cavity 

A circular model with a rectangular cavity as shown in Figure 1 is considered in this 

subsection. The Neumann BC is prescribed on the boundary of the model. The size 

parameters of the model are set as R =1m, /l R = 1/3, and /l d  = 2. In the numerical 

eigenvalue analysis, the boundary of the model is divided into 333 constant elements. The 

circular contour path with = (12, 0) and = 2.0 is employed and the parameters in the 

block SS method are set as N 512, K 5, L 15 and  10-10. 

Numerical eigenvalues are given in Table 2. Since the combined boundary integral 

formulation is used here, the fictitious eigenvalues indicated by stars have positive 

imaginary parts, which makes it easy to filter them out from the numerical results. By 

comparing with the eigenvalues of the unit circle, we can easily find the resonance 

frequencies of the cavity. Figure 2(a) shows the mode shape of 2
nk  corresponding to the 

mode number (1, 0) [4]. The mode shapes corresponding to the mode numbers (3, 0) and 

(4, 0) obtained by using other contour paths are also depicted in Figure 2(b) and 2(c). The 

frequencies with respect to them are 29.08-0.25i and 38.34-0.22i, respectively. The 



resonance frequencies and the corresponding mode shapes of the open cavity agree well 

with the FEM results reported in [3, 4]. Therefore, it is shown that the present boundary 

element eigensolver is valid in the numerical resonance analysis of acoustic open cavities. 

 

 
Figure 1. Circular model with a rectangular cavity 

 

Table 2. Numerical eigenvalues for the circular model with a rectangular cavity 

i  
n
ik  i  

n
ik  

1 11.01489-1.66373i 10 12.27486+1.84795i* 

2 11.23632-0.69483i 11 12.37476+1.38832i* 

3 11.24166+1.43629i* 12 12.39945-1.78559i 

4 11.29337+1.3603i* 13 12.43130+1.37002i* 

5 11.33078-1.55869i 14 12.45943+1.88850i* 

6 11.33753+1.66025i* 15 12.60031+1.58679i* 

7 11.51159+1.69666i* 16 12.82975+1.70661i* 

8 12.01693-1.71069i 17 13.01597-1.75295i 

9 12.17069+1.93313i*   

 

 
Figure 2. The mode shapes of the open cavity. (a) The eigenvalue 1k = 11.23-0.69 i . 

(b) The eigenvalue 2k  29.08-0.25 i . (c) The eigenvalue 3k = 38.34-0.22 i . 

 

4. CONCLUSIONS 

This paper presents a numerical method for the acoustic resonance analysis of open 

cavities based on the BEM. The method avoids the truncation of the infinite domain and 

improves the accuracy of the numerical solutions. The resulting eigenvalue problem in 

the BEM is a NEP, which is solved by using the contour integral method called the block 

SS method. The combined boundary integral formulation is employed to impose positive 



imaginary parts on the fictitious eigenvalues, which make it very easy to filter out the 

fictitious eigenvalues from the actural resonance frequencies of exterior acoustic 

problems. Numerical examples of a unit circle and a circular model with a rectangular 

cavity are used to show the accuracy and validity of the propose method. Further studies 

are to be carried out for more complicated models. 
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