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ABSTRACT

For several decades, the Statistical Energy Analysis (SEA) is used to predict
vibro-acoustic performances in high frequency domain. However, this method
needs the determination of some important coefficients such as the Coupling Power
Proportionality (CPP), which are not easily calculated. Numerous works have been
devoted to calculate analytically or experimentally these coefficients. During the last
40 years, some extensions or alternative models of SEA have also been proposed.
Nevertheless, only very few of them are particularly concerned with dissipative
materials insulating layers. The objective of this article is to proposed an energy
based method for the analysis of the medium frequency rang of vibrations by using
the results from the SEA and by introducing an Equivalent CPP (ECPP) that allows
dissipative problems in limited frequency band to be analyzed. This proposed
approach is based on a modal decomposition adapted to the vibro-acoustic problem
under consideration. In this paper, the case of the fluid-structure coupled multilayer
systems is considered in details. A numerical application is proposed to evaluate the
mean spectral mechanical energy of each layer. This proposed approach, which is
called SEA-ECPP hereinafter, presents the advantage of allowing a bridge between
the Finite Element Analysis (FEA) in low frequency range and the traditional SEA
in the high frequency range.
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1. INTRODUCTION

For the simulation of acoustical performance of a mechanical system, one of the
major problem is to construct a solution in a large frequency range that includes the low
frequency and the medium frequency ranges of vibrations. For each frequency range,
dedicated computational methods have been developed (see for instance [1] for the low
and medium frequency ranges). The Statistical Energy Analysis (see for instance [2–6])
has been developed for allowing the construction of numerical computational models that
are suitable for analyzing mechanical systems in the high frequency range of vibrations.
In the four last decades, some extensions of SEA have been proposed in the literature
[6–18]. Nevertheless, only very few are particularly concerned with dissipative structure
made up of dissipative materials. Fahy [19] and Sun [20] have proposed some results
for non-conservative couplings between two oscillators. The extension of their results
to a system of N > 2 oscillators is not straightforward and has never been proposed.
We propose a similar method that is adapted for the systems of N > 2 oscillators. It
is constructed as an extension of the classical SEA in the framework of weakly damped
oscillators system [21]. Additional coefficients to the Coupling Power Proportionality
(CPP) are introduced and are denoted as Equivalent CPP (ECPP). The weakly dissipative
couplings is also added to the fundamental hypothesis of the SEA. It should be noted that
with this extension we do no longer assume that the couplings are conservative, which
is one of the fundamental assumption in regular SEA methods. Indeed, the limitation of
conservative couplings have been circumvented by modifying the final expression of the
CPP coefficients. A numerical example is proposed in order to illustrate the method. It is a
double-partition wall system between two acoustical rooms, which are an emission room
and a receiving room. The double-partition wall system is a multilayer vibro-acoustical
system that is a dissipative acoustical fluid medium sandwiched between two solid elastic
media. An analysis of the numerical result is also presented. It is observed that the
proposed method can correctly and fast enough predict the sound insulation with small
computing costs.

2. COMPUTATIONAL MODELS

Hereinafter, we present the construction of a computational model for a tri-
dimensional double-partition wall system between two acoustical rooms (see Figure 1b).
The subsystems (1) and (5) are the 2 acoustical cavities for which the acoustical fluid
medium is air. Subsystem (1) is the emission room in which external forces are applied
and are modeled as uncorrelated white noises. Subsystem (5) is the receiving room.
The mean total energy in both emission and receiving rooms are the solutions of the
problem. We are also interested in calculating the Transmission Loss (TL) between the
mean total energy of the two acoustical rooms. The materials of the two panels (2) and
(4) are different. Solid elastic layer (2) is modeled as a steel plate and solid elastic layer
(4) is modeled as a plaster board. The insulation layer (3) is an acoustic fluid medium
with a high damping ratio ξ or damping loss factor (η = 2ξ). It should be noted that
the elastic and acoustic coefficients of this computational model are hereinafter assumed
to be frequency-independent that is a non-correct approximation for realistic materials.
Nevertheless, such an approximation has been introduced in order to simplify the
presentation of our new approach and its extension to frequency-dependent coefficients
is straightforward.
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Figure 1: A finite 3D 5-layer-system

2.1. Dynamical system and Reduced-Order Model

The computational models of each coupled subsystems are constructed using the
Finite Element Method. Then, generalized eigenvalue problems are solved into a large
frequency band of analysis for each associated uncoupled conservative computational
models. Generalized Reduced-Order Model (ROM) are constructed in projecting the
matrices of the computational models on the eigenvectors obtained from the generalize
eigenvalue problems. The ROM for subsystems (i) with i = 1, . . . , 5 involves generalized
reduced-order dynamical stiffness matrices [A(i)(ω)] such as

[A(i)(ω)] = −ω2[M(i)] + iω[D(i)] + [K (i)] , (1)

where [M(i)], [D(i)] and [K (i)] are the generalized reduced-order mass, damping and
stiffness matrice, respectively. The coupled ROM can be written as

[A(1)(ω)] −iω[C(12)]

iω[C(12)]T [A(2)(ω)] iω[C(23)]

−iω[C(23)]T [A(3)(ω)] −iω[C(34)]

iω[C(34)]T [A(4)(ω)] iω[C(45)]

−iω[C(45)]T [A(5)(ω)]
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, (2)

where [C(i j)] are the generalized reduced-order vibroacoustic coupling matrices and q(i)

are the vectors of the generalized coordinates. Let [A(ω)] be the global generalized
reduced-order dynamic stiffness matrix in the left-hand side of Equation 2. Let
[T (ω)] = [A(ω)]−1 be the matrix-valued global generalized reduced-order frequency
response function. [T (ω)] can be decomposed into 25 blocs [T (i j)(ω)] with i, j = 1, . . . , 5.
Generalized vector of external forces {F̂(1)(ω) , ω ∈ R} is a vector-valued random process
that is the Fourier Transform of a vector-valued random processes {F(1)(t), t ∈ R} whose
components Fα are a set of uncorrelated white noises with the cross power spectral
density S (1)

FαFβ
(ω) = S 0 δαβ where S 0 is a given constant. If 〈·〉 denotes the mathematical

expectation operator, 〈E(i)
B 〉 denotes the mean spectral mechanical energy over the

frequency band B in the angular frequency domain of subsystem (i). We then have

〈E
(i)
B 〉 =

∑
α=1

〈E
(i)
α,B〉 , 〈E

(i)
α,B〉 =

1
2π

∫
B

e(i)
α (ω) dω , (3)



where e(i)
α (ω) is the modal spectral mechanical energy density of the α-th mode of

subsystem (i) written as

e(i)
α (ω) = [M(i)]ααS (i)

q̇αq̇α(ω) , S (i)
q̇αq̇α(ω) = ω2S 0

∑
β=1

[T (i1)(ω)]αβ[T (i1)(ω)]αβ . (4)

The ratio of the mean spectral mechanical energy between the emission room and the
receiving room, which is also called the TL, is given by

TL = 10log10

〈E
(1)
B 〉

〈E
(5)
B 〉

. (5)

2.2. Proposed ROM (PROM) in limited frequency band with condensations

For narrow frequency band of analysis B, the computational cost of such computational
model is decreased if only the calculating of the eigenmodes associated with frequencies
in B (the so called resonant eigenmodes) are needed. Nevertheless, in many works
[13, 18, 22, 23], authors have pointed out the non-negligible influence of panel’s non-
resonant eigenmodes (that is to say, the eigenmodes that are not associated with the
frequencies in B). These non-resonant eigenmodes are actually involved into the coupling
between the generalized coordinates associated with the resonant eigenmodes of different
subsystems (see Figure 2). In using a similar approach than in [18], the generalized

Figure 2: Modal coupling of a 5-layer system

coordinates qB+ and qB− , for non-resonant eigenmodes that are respectively associated
to angular-frequencies ω+ ∈ B+ and ω− ∈ B− with ω+ > ω > ω− for all ω ∈ B, are
eliminated from Equation 2 by using a condensation method. Note that these qB− and
qB+ are involved into the coupling of subsystems. Consequently, rewritten only in term
of generalized coordinates qB associated with resonant eigenmodes, additional matrices
must be introduced in order to take into account theses couplings, since qB− and qB+

have been eliminated. We then obtain a Proposed Reduced-Order Model (PROM) that is
written as
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, (6)



where qB = (q(1)
B , . . . ,q

(5)
B ) is decomposed into blocks of generalized coordinates q(i)

B
associated with the resonant eigenmodes of subsystem (i). Note that the construction
of these matrices still requires the computation of the non-resonant eigenmodes and,
consequently, the initial generalized eigenvalue problem must still be solved with an
ad hoc computational model for all ω belonging to B−, B and B+. Let [�B(ω)] be
the global equivalent reduced-order dynamic stiffness matrix in the left-hand side of
Equation 6. Let [�B(ω)] = [�B(ω)]−1 be the matrix-valued global equivalent reduced-
order frequency response function for the PROM. An approximation is then used in order
to calculate 〈E(i)

B 〉 for the PROM based on Equations 3.

〈E
(i)
B 〉 =

∑
α=1

〈E
(i)
α,B〉 , 〈E

(i)
α,B〉 ≈

1
2π

∫
B

e(i)
α,B(ω) dω , (7)

where e(i)
α,B(ω) is the approximated modal spectral mechanical energy density of the α-th

mode of subsystem (i) defined as

e(i)
α,B(ω) = [�(i)

B ]αα�
(i)
q̇αq̇α(ω) , �

(i)
q̇αq̇α(ω) = ω2S 0

∑
β=1

[�(i1)
B (ω)]αβ[�

(i1)
B (ω)]αβ , (8)

where [�(i)
B ] is the mass matrix associated with the dynamic stiffness matrix [�(i)

B ω)] in
the block decomposition of [�B(ω)] (see Equation 6). It should be noted that [�(i)

B ] is not
the original uncoupled modal mass of subsystem (i) since it has been modified by added
mass during the condensation step and it is no longer a diagonal matrix.

3. PROPOSED SEA-EQUIVALENT COUPLING POWER PROPORTIONALITY
(ECPP) APPROACH

One of the reasons that might explain why SEA can be tricky to be used in many
engineering applications, it is related to its fundamental hypotheses that can be very
restrictive. These hypotheses are clearly classified by authors [21, 24], and the first
hypothesize is that "couplings are conservative", which means no dissipative coupling is
allowed in SEA. In this section, we propose to rewrite the usual equations of Coupling
Power Proportionality (CPP) in order to circumvent this limitation and to extend the
theory to non-conservative couplings. This new approach is hereinafter referred by
Equivalent Coupling Power Proportionality (ECPP) for which new ECPP ζ and χ
are introduced for the construction of the ECPP. For the sake of simplicity, detailed
explanations are not presented in this paper. Let us consider a N-oscillators second-order
system

[M] q̈ + ([D] + [G]) q̇ + ([K] + [R]) q = F . (9)

where [M], [D], [K] are symmetric positive-definite and matrices [G] and [R] are skew-
symmetric matrices. The non-usual matrix [R] can represent the additional matrices added
into the PROM after the condensation of the non-resonant eigenmodes. It is assumed that
the couplings between the components qα of the solution q are weak, which means that
[K]αβ � [K]αα, [R]αβ � [K]αα, [M]αβ � [M]αα, [G]αβ � [D]αα and [D]αβ � [D]αα for all
α , β. The construction of the solution of Equation 9 is quite similar to the construction
proposed in [5, 21]. The main difference is due to the additional dissipative couplings



[D]αβ , 0 and the additional couplings [R]αβ, for α , β. The mean modal power balance
equation is written as

〈Pα〉in = 〈Pα〉diss +
∑
β,α

〈Pαβ〉out , (10)

where 〈Pα〉in is the mean modal input power, 〈Pα〉diss is the mean modal dissipated power
and 〈Pαβ〉out is the mean modal output power including mean modal exchanged power and
mean modal exchanged dissipated power that are such that

〈Pα〉diss =

[D]αα +
∑
β,α

[D]αβ

 〈q̇2
α〉 , 〈Pαβ〉out = ζαβ〈Eα〉 − χαβ〈Eβ〉 , (11)

where ζαβ and χαβ are new ECPP defined as

ζαβ =

∫ ∞
−∞

iω
(
([K]αβ + ω2[M]αβ)2 + ω2[G]2

αβ − ω
2[D]2

αβ − [R]2
αβ

)
Tβ(ω) |Tα(ω)|2 dω∫ ∞

−∞
[M]ααω2 |Tα(ω)|2 dω

−

∫ ∞
−∞

2ω2([K]αβ[D]αβ + ω2[M]αβ[D]αβ − [G]αβ[R]αβ)Tβ(ω) |Tα(ω)|2 dω∫ ∞
−∞

[M]ααω2 |Tα(ω)|2 dω
, (12)

χαβ =

∫ ∞
−∞

iω
(
([K]αβ + ω2[M]αβ)2 + ω2([G]αβ − [D]αβ)2 + [R]2

αβ

)
Tα(ω)

∣∣∣Tβ(ω)
∣∣∣2 dω∫ ∞

−∞
[M]ββω2

∣∣∣Tβ(ω)
∣∣∣2 dω

−

∫ ∞
−∞

2iω(ω2[M]αβ[R]αβ + [K]αβ[R]αβ)Tα(ω)
∣∣∣Tβ(ω)

∣∣∣2 dω∫ ∞
−∞

[M]ββω2
∣∣∣Tβ(ω)

∣∣∣2 dω
, (13)

where Tα(ω) =
(
−ω2[M]αα + iω[D]αα + [K]αα

)−1
. It should be noted that, unlike the usual

SEA, there is no reciprocity for the mean modal output power, that is to say 〈Pαβ〉out ,
−〈Pαβ〉out. In addition, if [R]αβ = 0 for all α and β, and if [Dαβ] = 0 for all α , β, then
ECPP are both equals to the CPP and we obtain the usual relation of the SEA. We can
then consider ECPP as an extension of usual CPP that broadens its validity to non zero
matrix [R] and non zero dissipative couplings [D]αβ.

4. NUMERICAL EXAMPLE

In this section, two numerical examples are presented that carry out the construction
of the PROM (see section 2.2) and the SEA-ECPP formulation (see section 3). A first
numerical example is presented for which the TL is calculated for a relatively small design
system whose parameters are presented in Table 1. The dimension are small in order
to limit the computational costs of the ROM and PROM for being able to validate the
predictability of the SEA-ECPP. Once again, such a small design system is not chosen
in regard to the efficiency of the SEA-ECPP but in regard to the computational cost
induced by using ROM and PROM. Consequently, calculations are performed only for
the frequencies [300, 3000] Hz in one-third octave band which will allow the validation
of the SEA-ECPP to be asserted. It is shown in Fig. 3 that both the solutions calculated
by the SEA-ECPP and the PROM are very close to the reference solution calculated by
using the ROM.



Subsystems Lx (m) Ly (m) Lz (m) ρ (kg/m3) C (m/s) ξ/η

(1) 0.8 0.6 0.8 1.29 340 0.005 / 0.01
(3) 0.8 0.6 0.045 3 200 0.5 / 1
(5) 0.8 0.6 0.7 1.29 340 0.005 / 0.01

Subsystems Lx (m) Ly (m) Lz (m) ρ (kg/m3) E (Pa) ν ξ/η

(2) 0.8 0.6 0.001 7800 2 × 1011 0.3 0.005 / 0.01
(4) 0.8 0.6 0.0125 736 2.7 × 109 0.1 0.015 / 0.03

Table 1: Properties of each layer for the first numerical example

Furthermore, for a calculation of TL in this frequency range, the elapsed computational
time for the calculation of the reference solution in using the ROM and the PROM is
respectively 12 hour and 1350 seconds in using parallel computing with a computational
cluster with 30 cores. The elapsed computational time is 30 seconds with the SEA-ECPP
approach and without using any computational cluster. It should be noted that the elapsed
computational times do not include the computing of the eigenvalues and eigenvectors.
Figure 4 shows the comparison of the mean spectral mechanical energy of subsystems (1)
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Figure 3: Comparison between reference, PROM and SEA-ECPP for a highly dissipative
system

and (5) in the same frequency bands calculated in using the SEA-ECPP, the PROM and
the ROM. It can be seen that the results are again very satisfying.

A second numerical example is presented for which the TL is calculated for a larger
design system whose parameters are given in Table 2. This design system is a 72/48
double-partitions wall, composed of two plasterboard BA13 and an equivalent dissipative
layer between 2 large acoustic cavities. The TL is calculated on a broad frequency range
of analysis [80, 5000] Hz. The FEA is used for calculating the TL on the low frequency
domain [80, 300] Hz. The SEA-ECCP is used for calculating the TL into the medium
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Subsystems Lx (m) Ly (m) Lz (m) ρ (kg/m3) C (m/s) ξ/η

(1) 4.2 2.5 3 1.29 340 0.005 / 0.01
(3) 4.2 2.5 0.045 3 200 0.05 / 0.1
(5) 4.2 2.5 3 1.29 340 0.005 / 0.01

Subsystems Lx (m) Ly (m) Lz (m) ρ (kg/m3) E (Pa) ν ξ/η

(2) 4.2 2.5 0.0125 736 2.7 × 109 0.1 0.015 / 0.03
(4) 4.2 2.5 0.0125 736 2.7 × 109 0.1 0.015 / 0.03

Table 2: Properties of each layer for the second numerical example

frequency domain [250, 2000] Hz. Finally, the commercial software Acousys is used
for carrying out the Transfer Matrix Method (TMM) and for calculating the TL in the
high frequency domain [1250, 5000] Hz. Results are presented on Figure 5. It can be
shown that these 3 methods are well overlapped, especially the FEA and SEA-ECPP in
the overlapping domain [250, 300] Hz.

5. CONCLUSIONS

In this paper, we have introduced an energy based method that is an extension of the
SEA for a system of coupled oscillators in order to estimate the mean spectral mechanical
energy of a multilayer system that contains highly dissipative layer. The proposed
SEA-ECPP method allows the restrictions of conservative couplings in classic SEA to
be lifted. The only inputs of this method are modal information, which can be obtained
by FEA. With these information, associated with a proposed order model (PROM) with
condensation of non-resonant eigenmodes, such a method (called SEA-ECPP) allows
computing of mean spectral energies to perform very fast in the medium frequency
domain. A further work in the optimization of the identification of coupling matrices can
be a perspective of this paper.
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