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ABSTRACT 

The Acoustic Black Hole (ABH) phenomenon can be capitalized to manipulate and 

mitigate flexural waves in thin-walled structures. It features unique space-

dependent wavenumber variation and wave celerity reduction in the tapered ABH 

area, thus posing great challenges to the existing modelling methods. In this work, 

the Partition of Unity Finite Element Method (PUFEM) is revamped to resolve the 

frequency response of an ABH beam. The method allows incorporating auxiliary 

interpolation functions in the finite element framework in order to better cope 

with the ABH oscillating behaviour. Several types of tapered Timoshenko beam 

elements are constructed by employing enrichment functions based on the ABH 

wave solutions with the WKB approximations (for general profiles) or the exact 

solutions (for parabolic profiles). Other enrichment bases, including polynomials, 

Fourier series and wavelets, are also investigated as hierarchic refinements. Using 

these enriched elements, structural responses of an ABH beam are computed and 

compared with the standard FEM. It is shown that the PUFEM can be easily 

adapted to model ABH effects with a good accuracy and efficiency, outperforming 

the conventional FEM for solving ABH problems. 
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1.  INTRODUCTION 

 

The Acoustic Black Hole (ABH) effect shows prospects for the manipulation 

and mitigation of the flexural waves in thin-walled structures. The ABH-featured 

structures consist of a tapered thickness profile which smoothly decreases according to a 

power-law profile [1]. As the incident flexural waves travel towards the indented ABH 

area, the wavenumbers increase continuously and the wave celerity reduces gradually 

alongside an amplification of the wave amplitude. In an ideal scenario when the 

thickness is tapered down to zero, waves will spend infinite time travelling inside the 

ABH beam, resulting in no wave reflections. Meanwhile, the vibrational energy is 

focalized and accumulated in the thin tapered region due to the wave modulations or 

compressions induced by the structural inhomogeneity. In practical cases where the zero 

thickness is non-achievable, applying surface damping treatment over the tapered region 

can significantly reduce the wave reflections and enhance the energy absorption [2]. 

ABH structures feature unique space-dependent wavenumber variation and wave 

celerity reduction. Therefore, most modelling methods require a refined discretization 

scheme with high resolution in order to capture the strong localized and highly 

oscillatory ABH behaviours [3-5]. This, however, leads to a drastic increase in the 

computational cost, which may become critical when dealing with more complicated 

ABH problems such as structures with multiple embedded and auxiliary ABH absorbers 

[6,7], parameter optimizations of ABH tapers [8,9], interactions of ABH structures with 

surrounding medium, and so on. Therefore, there is a need to develop more efficient 

methods to better tackle the ABH simulation problems.  

 

In recent decades, enriched methods have been developed to offer improvements 

in the computational accuracy for short wave problems with lower computation efforts. 

These simulation techniques allow the incorporation of auxiliary functions with good 

approximation properties for the concerned problems in the formulation. As one of 

these enriched methods, the Partition of Unity Finite Element Method (PUFEM) [10,11] 

offers the advantages of sharing high similarities with conventional FEM, thus allowing 

easy implementation by using existing finite element meshes and codes [12,13]. In this 

work, the PUFEM is revamped to simulate the structural vibrations of an ABH beam. 

Different formulations are proposed to deal with the broadband ABH problems, seeking 

to improve the computational accuracy and efficiency of the PUFEM. Tapered 

Timoshenko beam elements are first constructed by employing various enrichment 

functions based on the ABH wave solutions with the WKB approximations (for general 

profiles) or the exact solutions (for parabolic profile). A “local” wave enrichment is 

studied for comparison purposes. Other enrichment bases, including polynomials, 

Fourier series and wavelets, are also investigated as hierarchic refinements. Using the 

built enriched elements, structural responses of an ABH wedge are computed and 

compared with the standard FEM. 

 

2.  FORMULATION 

 

2.1 Problem Statement 

 

Consider the flexural vibration of a beam with variable thickness. There are two 

main theories dedicated to beam: Euler-Bernoulli and Timoshenko theories. For the 

former, the axial displacement of the beam, at distance z from the neutral layer, is 

written as  (   )       , where  (   )   ( ) is the lateral displacement of mid-



surface in z direction. For the latter, the beam axial displacements are replaced by 

 (   )    ( ), where  ( ) is the rotation angle of the cross section. The equation of 

motion of a tapered Euler-Bernoulli beam is given by 

 [𝐸𝐼( )    ]   + 𝜌𝐴
( ) ̈  𝑓𝑧  0  (1) 

and the equations of motion of a tapered Timoshenko beams are 

 
[𝜅𝐺𝐴( )( +    )]   𝜌𝐴( ) ̈ + 𝑓𝑧  0  

𝜅𝐺𝐴( )( +    )  [𝐸𝐼( )   ]  + 𝜌𝐼( ) ̈  0  
(2) 

(3) 

where fz is the distributed oscillating loading. The geometrical parameters are the 

moment of inertia I, the area of the cross-section A and the shear correlation factor κ. 

The material parameters are the Young’s modulus E, the shear modulus G and the 

density ρ. The Euler-Bernoulli beam model, as a special case of Timoshenko beam, 

neglects the effects of shear deformation and rotary inertia. This simplified model is 

widely used in the literature to study the ABH phenomenon. Taking a simple supported 

beam as an example, the associated variational formulation for the tapered Timoshenko 

beam writes: 

 

∫ [  𝜌𝐴 ̈ +   𝜌𝐼 ̈ +    
 𝐸𝐼   + ( 

 +   
 )𝜅𝐺𝐴( +    )   

 𝑓𝑧]     
      

   
 

 
 0     (4) 

where λ0 and λL are Lagrange multipliers and L is the beam length. To handle the 

boundary terms with PUFEM, the essential boundary condition is enforced as:  

   
      

    0    ∀(  
    

 ) (5) 

This approach also permits to handle the coupling conditions between two media with 

different wave speeds [14]. 

 

2.2 Wave Solutions 

 

The closed-form solutions for Eq. 1 or Eqs. 2 and 3 in terms of elementary 

functions are difficult to be found. The analyses of these types of differential equations 

can be done approximately. The WKB method offers appropriate approximate solutions 

to the differential equations whose coefficients are slowly varying function in space [15]. 

For a tapered Euler-Bernoulli beam, the WKB solutions take the form 

  (  𝑡)   ̂(x)𝑒−𝑖𝜔𝑡𝑒𝑖𝑆( )  (6) 

where  ( ) is the eikonal of the quasi-plane wave and  ̂(x) is the amplitude function. 

 ( ) can be found by integrating local wavenumber  ( )      ⁄  over space. The 

local wavenumbers are expressed as 

  ( )  {±1 ±𝑖}[𝜔2𝜌𝐴( )/𝐸𝐼( )]1/4 (7) 

where the braces { , } donate the four possible values corresponding to the two 

travelling waves and two evanescent waves. The amplitude function  ̂(x) is determined  

 



from the energy conservation law [1,15].The WKB solutions for the tapered 

Timoshenko beam write 

 { (  𝑡)  (  𝑡)}  { ̂(x)  ̂(x)}𝑒 𝑖𝜔𝑡𝑒𝑖 ( ). (9) 

The local wavenumbers  ( )      ⁄  corresponding to the four types of waves are 

given by 

  ( )  ±[
1

2
(
1

𝜅𝐺
+
1

𝐸
)𝜌𝜔2 ±√(

1

𝜅𝐺
 
1

𝐸
)
2

𝜌2𝜔4 + 4
𝜌𝐴( )

𝐸𝐼( )
𝜔2 ]

2

 .  (9) 

The displacement amplitude function is given in Ref. [15]. 

 

For a tapered Euler-Bernoulli beam with parabolic thickness variation  ( )  
  2, exact analytical solutions in terms of power functions can be derived [16]. The 

solution to Eq. 1 is sought by 

  (  𝑡)   ̂𝑒−𝑖𝜔𝑡 𝑣  (10) 

where 

 𝑣   
3

2
± [ 

17

4
±√4 + 12

𝜌𝜔2

𝐸𝜀2
 ]

1/2

. (11) 

Eq. 11 can be expressed in an exponential form. 
 

2.3 Enriched Tapered Timoshenko Beam Elements 

 

The PUFEM Timoshenko beam elements can be constructed by using different 

auxiliary enrichment functions. The lateral displacement and rotation are expanded, 

respectively, as: 

 

  ∑𝑁𝑖(𝜂) ∑𝐴𝑖 𝑛Ψ𝑖 𝑛

𝑁

𝑛=1

2

𝑖=1

   

  ∑𝑁𝑖(𝜂) ∑𝐵𝑖 𝑛Φ𝑖 𝑛

𝑁

𝑛=1

2

𝑖=1

 . 

(12) 

 

 

(13) 

Here, 𝑁1 and 𝑁2 are the shape functions of classical linear FEM and 𝜂  [ 1 1] is the 

local coordinate. For the wave enrichment, the WBK approximate solutions for Euler-

Bernoulli and Timoshenko beams and the exact analytical solutions for the Euler-

Bernoulli beam can be taken as enrichment functions Ψ    and Φ   . A constant term is 

also added to the enrichment basis in order to capture the contribution of distributed 

loading. An enrichment based on “local” solutions for Eqs. 2 and 3 is also studied: 

{Ψ𝑖 𝑛  Φ𝑖 𝑛}  {1 exp[ 𝑖 1(   𝑖)]  exp[ 𝑖 2(   𝑖)]  exp[ 𝑖 3(   𝑖)]  exp[ 𝑖 4(   𝑖)]}  (14) 

where  𝑖 are the local wavenumbers evaluated at the node  𝑖, using Eq. 9. Three other 

kinds of enrichment are also considered in this work.  

 

 

 



Polynomial enrichment:  

 {Ψ𝑖 𝑛  Φ𝑖 𝑛}  {1 𝜂𝑖 𝜂𝑖
2 𝜂𝑖

3 … }  (15) 

where 𝜂𝑖  (   𝑖)/   (   is the length of the element).  

 

Fourier-type enrichment: 

 {Ψ𝑖 𝑛  Φ𝑖 𝑛}  {1 cos𝜋𝜂𝑖   sin𝜋𝜂𝑖  cos2𝜋𝜂𝑖  sin2𝜋𝜂𝑖  … }  (16) 

Wavelet enrichment with the cardinal B-splines: 

 

The cardinal B-splines, of order m, Nm, are used as scaling functions in the wavelet 

analysis. In this study the quantic B-spline with a scaling parameter     is chosen as 

the enrichment functions as: 

 {Ψ𝑖 𝑛  Φ𝑖 𝑛}  {1 …  2
𝑗/2𝑁𝑚(2

𝑗𝜂𝑖  𝑛) …  for 𝑛   }  (17) 

The wavelet functions have finite-support or fast-decaying oscillating shapes and 

possess superior approximating capability for the highly-localized ABH oscillating 

behaviour [5,17]. Other types of wavelets can also be chosen to replace cardinal B-

splines. 

 

3.  NUMERICAL EXAMPLES 

 

In this section, the Frequency Response Functions (FRF) are calculated by using 

different PUFEM elements and compared with the reference solutions offered by the 

classical linear FEM, obtained a sufficiently refined mesh (4000 elements). As a 

benchmark, a simply-supported tapered wedge (without an uniform portion) is 

considered in this paper. The geometrical and material parameters used in the 

simulations are given in Table 1. In a typical ABH structure, the tapered ABH area is 

usually non load-bearing due to the weakened stiffness. Therefore, loadings are usually 

applied at the uniform portion rather than the tapered portion. To eliminate the influence 

of contribution of distributed loading terms, i.e. the particular solution of the governing 

equations, on the evaluation of the performance of wave enrichment, the distributed 

loading used to activate the tapered wedge is chosen to have the same variation as the 

thickness profile. 

 
Table 1. Parameters used in our computations 

Wedge Thickness:  ( )  0.01( + 0.02)2/(0.2 + 0.02)2, 0 ≤  ≤ 0.2 

Material Parameters (wedge): E=70 GPa , ρ=2780 kg/m
3
 , G=27 GPa 

 

Figures 1, 3, 4 and 5 show the FRF computed with PUFEM using different 

enrichment functions. The response location is at 1/4 of the beam length from the left 

end (x=0.05m). Figure 1 depicts the results using the wave enrichment based on WKB 

approximate solutions, using 16 elements with a same size (170 DoFs), and the exact 

analytical solutions. A good agreement between PUFEM and reference solutions can be 



observed. The elements enriched with waves can provide accurate predictions within a 

broad and highly dynamic frequency band containing multiple structural resonances.  

 

Figure 2 shows the structural response along the beam at the upper frequency 

limit of 40 kHz using Euler-Bernoulli WKB enrichment. One can observe the typical 

ABH phenomenon: the variation of local wavelengths and the increase of oscillation 

amplitudes due to the tailored structural thickness. The zoom-in sub-figure shows the 

detailed structural deformation within the 1st element on the left end (thinner part). One 

can see that one single enriched element can capture multiple wavelengths, which is 

typical of the wave enrichment, as well as the wave modulation effect. 

(b)

(a)

(c)

 
Figure 1. FRF using PUFEM (16 elements) with a) Euler-Bernoulli WBK enrichment (blue), b) 

Timoshenko WKB enrichment (green) and c) exact wave solutions (red) and reference solutions 

(grey). 

 

 
Figure 2. Wedge response at 40 kHz of PUFEM with Euler-Bernoulli WBK enrichment (blue) 

and reference solutions (grey). The subplot is the detailed response of the element at the left 

end). 



(b)

(a)

 
Figure 3. FRF of PUFEM (16 elements) with a) Euler-Bernoulli “local” wave enrichment 

(bright green), b) polynomial enrichment (dash-dot red) and reference solutions (grey). 

(b)

(a)

 
Figure 4. FRF of PUFEM (1 element) with a) Fourier enrichment (dash purple, 152 DoFs), b) 

wavelet enrichment (dot yellow, 172 DoFs) and reference solutions (grey). 

(b)

(a)

 
Figure 5. FRF of PUFEM (4 element) with a) Fourier enrichment (dash purple, 188 DoFs), b) 

wavelet enrichment (dot yellow, 170 DoFs) and reference solutions (grey). 

 

In Figure 3, the FRF of the PUFEM with Euler-Bernoulli “local” wave 

enrichment and polynomial enrichment are computed using 16 elements (170 DoFs) and 

compared with the reference solutions. The “local” wave enrichment provides accurate 

results up to around 1.5 kHz, the polynomial enrichment can ensure the accuracy below 



1kHz. The performance of the “local” wave enrichment is not as good as wave 

enrichment based on WKB or exact solutions. This is because the local wave solutions, 

which are only accurate in the vicinity of the nodes, can hardly represent the strong 

variation of wavenumbers and amplitudes within the element at higher frequencies.  

 

The PUFEM with Fourier or wavelet enrichment should be better implemented 

by using an ordinary mesh with a high enrichment order N. This is due to the 

approximation properties of the enrichment functions. Figure 4 shows the FRF curves 

obtained from PUFEM simulation with Fourier and wavelet enrichment, using only 1 

element and with similar DoFs as the wave enrichment used in Figure 1. The wavelet 

enrichment, with a scaling parameter j=4, is accurate up to 2.5 kHz and performs better 

than the Fourier enrichment. It was observed that the system matrix resulting from the 

Fourier enrichment becomes ill-conditioned above 1 kHz. This can be alleviated by 

increasing the element number and reducing the enrichment terms, as shown in Figure 5. 

The wavelet enrichment using scaling parameter j=3 (Figure 5) shows similar 

performance with the case of Figure 4. The element enriched with wavelets shows 

advantages over the one enriched with Fourier series. It also outperforms the elements 

enriched with “local” wave solutions and polynomials, but it is still not as good as the 

WKB enrichment. 

 

4.  CONCLUSIONS 

 

In this work, tapered Timoshenko beam elements are developed to solve the 

forced response problem of an ABH wedge. Several types of enriched elements are 

constructed using different enrichment functions. The wave enrichment is based on 

WKB approximate solutions for general tapered Euler-Bernoulli and Timoshenko 

beams and exact analytical solutions for a parabolically tapered Euler-Bernoulli beam. 

Other types of enrichment are also considered in this work, including the “local” wave 

enrichment, polynomial enrichment, Fourier enrichment and wavelet enrichment. The 

performances of different enrichment are evaluated in terms of frequency response 

functions.  

 

Through numerical explorations and comparisons with reference solutions, it 

was shown that the PUFEM is conducive to coping with ABH-related wave phenomena 

in a broad frequency band. Upon a proper selection of the enrichment scheme, accurate 

simulation could be achieved using a small number of elements or degrees of freedom. 

The capability of capturing multiple waves within an enriched element results in a 

significantly reduced computational cost. 

 

The wave solutions with the WKB method are employed to build a FE- and 

wave-based model for ABH tapered structures. This formulation can also be employed 

for coping with other problems with spatially varying wave speeds. A new wavelet-

based element is also developed for simulating structural vibrations. The PUFEM 

allows easy inter-element connection without scarifying the approximation properties of 

the wavelets. The enriched wavelet element also shows its versatility and flexibility as it 

could be used for other problems with quasi-singular solutions for instance. Our future 

works include applying the present numerical methods for solving other structural 

vibration problems. 
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