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ABSTRACT

In low Mach number aeroacoustics, the well known disparity of length scales
makes it possible to apply well suited hybrid simulation models using different
meshes for flow and acoustics, which leads to a powerful computational procedure.
In general, hybrid aeroacoustic methods seek for robust and conservative mesh
to mesh transformation of the aeroacoustic sources while high computational
efficiency is ensured. We investigate the accuracy of a standard conservative
interpolation scheme compared to the more accurate cut-volume-cell approach
and their application to the computation of rotating systems, namely an axial fan.
The capability and the robustness of the cut-volume-cell interpolation in a hybrid
workflow on different meshes are investigated by a grid convergence study.
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1. INTRODUCTION

In computational aeroacoustics (CAA) hybrid schemes are used to separate the flow
from the acoustic computation employing aeroacoustic analogies [1, 2]. Accordingly, for
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each physical field optimized computational grids can be used achieving highest accuracy.
Anyhow, this implies that the flow and the acoustic grid could be quite diverse and
consequently an accurate data transfer from the flow to the acoustic grid is essential
to obtain reasonable CAA results. Therefore, several interpolation strategies can be
applied, such as low complexity nearest neighbor interpolation or highly involved volume
intersections between the two grids. Based on the first application of the cell volume
weight interpolation [3], the acoustic effects of the cut-volume-cell approach compared to
the limited standard approach are studied [4].

2. METHODOLOGY

2.2.1. Perturbed convective wave equation

To derive the computationally efficient perturbed convective wave equation (PCWE),
an acoustic/viscous splitting alike [5] is conducted and an Arbitrary-Eulerian (ALE)
description for the operators
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is introduced. Here, v identifies the mean velocity of the flow field and vr the relative
velocity of the grid. Based on the acoustic perturbation equations [6], we obtain the
PCWE for rotating systems [3]
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where c denotes the speed of sound, ρ̄ the mean density of the flow field and pic

the incompressible part of the pressure. Using this formulation decreases the number
of unknowns (acoustic pressure pa and particle velocity va) to only a scalar unknown, the
acoustic velocity potential ψa with ∇ψa = va. Based on the PCWE, we verify the source
term interpolation of aeroacoustic sources for moving and non-moving meshes.

2.2.2. Source term interpolation

The standard interpolation conserves the energy globally but approximates the local
energy conservation of the finite element right hand side by∫
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where Ef
k denotes the cell of the flow grid, ξEf

k
the local coordinate, Mf the number of

flow cells, and the subscript i the node number on the CAA grid. The standard approach
includes all nodal loads Ff

k (see Fig. 1a) of the flow cells with nodes inside the respective
acoustic finite element Ea. The nodal loads on the CFD mesh are assembled in terms of
the finite element method by
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However, we may reduce the computational complexity for fine flow grids by
simplifying the integration over the source volume to a first order volume weighting
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Finally, the nodal loads Ff
k are interpolated to the nodes of the acoustic mesh using

finite element basis functions Nai [4].

(a) Workflow of the conservative standard interpolation.
(b) CFD grid (red) and CAA grid
(blue).

Figure 1: Standard approach for conservative interpolation and general mesh sizes of
flow and acoustic grid.

As long as the flow grid is much finer than the acoustic grid, this standard approach
delivers correct results. The discretization density of flow computations diversifies
from fine meshes at the boundaries to coarse meshes at regions without flow gradients.
However, the discretization of the CAA mesh is supposed to be steady to properly
transport waves. Consequently, hybrid aeroacoustic workflows have to be able to handle
regions where the density of the flow grid is larger than the density of the acoustic mesh
(see Fig. 1b). In cases like this, the stated standard approach does not deliver accurate
results because it neglects part of the contributions weighted by the volume. Contrary to
the standard interpolation, the cut-volume-cell approach takes for each acoustic volume
element Ea

l the set of flow cells Ef that intersect with the particular acoustic volume
element

Ef∩a
l = Ea

l ∩ Ef (6)

into account. Thus, this exigent approach conserves the energy globally as well as locally
for varying mesh sizes of both the flow and the acoustic grid. The finite element right
hand side is computed with∫
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and based on the intersecting cells, the nodal loads Ff∩a
k are volume-weighted by
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With the assumption that the aeroacoustic source term is constant for a fluid cell, the
integral simplifies to a multiplication of the intersection volume Vc ( VEf∩a

l
with the

source density f f
l at the volumetric centroid xc ( ξEf∩a

l
of the intersection polyhedron
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The workflow of the algorithm is depicted in Fig. 2. This approach makes it possible
to accurately treat the stated problem of an acoustic grid that is finer than the flow grid
possible.
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Figure 2: Necessary steps for the interpolation based on the cut-volume-cell approach.

3. RESULTS

The stated approach is now used for the acoustic simulation of a fan (see Fig. 3a) that
was already used for investigations in [7]. The fan consists of 9 plates, has a diameter
of 0.5 m, is operated at 1500 rpm with a volume flow of 1.3 m3/s, and is mounted
together with the motor into a funnel. A detached eddy CFD simulation was used to
obtain the necessary incompressible fluid pressure for computing the source terms with
Equation 2. The obtained source terms were first assembled onto the flow grid and
in a next step interpolated to the acoustic grid (see Fig. 3b) by using the stated cut-
volume-cell interpolation approach. Marked in yellow is the rotating region including the
fan, in which the main acoustic source terms emerge. The green region is a stationary
propagation region and the red domain marks a perfectly matched layer (PML) to take the
free radiation condition into account. The surfaces of the nozzle, duct, strut, driving shaft,
and motor are modeled as acoustically hard walls.

In a next step, after the source terms were interpolated to the CAA grid, the acoustic
computation was done with our in-house code CFS++ [8]. Following, the resulting power
spectral densities (PSD) of the two different simulations using the standard as well as the
cut-volume-cell method are compared (see Fig. 4).

Measurements with a measurement time of 30 s and with a measurement time of
0.1 s are depicted in black and gray. Especially the measurement time of 0.1 s is
close to the simulation time of 0.08 s. The results of both simulations have a radical
drop at a frequency of 6 kHz, because the mesh resolution in the propagation domain
becomes too coarse for acoustic wave lengths in this frequency range. The result of
the simulation using the standard approach is shown in red. Clearly, it over-predicts
the PSD for the entire frequency range and is not adequate for cases with complex
geometry and distorted grid cells of varying sizes. However, the result of the cut-volume-
cell interpolation, depicted as a blue line, is in good agreement with the performed



(a) Geometry of the
investigated fan.

PML

Propagation domain

Rotating region (including the fan)

(b) Geometry of the acoustic domain with the rotating region in
yellow.

Figure 3: Investigated fan.

102 103 104

−50

0

50

100

f (Hz)

P
S
D

(d
B

re
(2

×
10

−
5
))

2
/H

z

Measurements (0.1 s)

Measurement (30 s)
Cut
Standard

Figure 4: Comparison of the PSD of measurements and the PSD of simulations using the
standard and the cut-volume-cell interpolation algorithm, respectively.

measurement. Consequently, for the application on complex geometries this approach
delivers the robustness that is required.

Grid convergence study using the cut-volume-cell interpolation
Based on the knowledge that the presented cut-volume-cell interpolation outperforms the
standard procedure, the influence of the CAA discretization resolution is investigated.
Therefore, the same setup as for the CFD simulation was used to interpolate the acoustic
source term to four different grids in the rotating region. All of those grids are tetrahedral
and have varying grid densities. The specifications of the four different meshes are shown
in Tab. 1, with mesh 1 being the finest and mesh 4 the coarsest grid. Each grid of the
rotating region is depicted in Fig. 5a, with the meshes getting coarser from left to right.
At least on element has to be used in the tip gap to properly represent the topology.
The elements in the tip gap dominate the number of elements for coarse meshes and
consequently limit the possible minimal number of elements.

The PSD computed with the four different rotating meshes using the cut-volume-cell
approach, as well as the PSD of the corresponding measurements as presented before are
shown in Fig. 5b. The dominant peak at a frequency of 300 Hz is a result of the interaction
of the tip gap flow and the blade passing frequency. It should be observed that those two



Total elements Total nodes Max. element size in mm
Mesh 1 7690908 1322937 7
Mesh 2 1021697 181186 12
Mesh 3 555562 96535 18
Mesh 4 337013 58708 24

Table 1: Different meshes used in the rotation region to investigate the cut-volume-cell
interpolation.

frequencies are not alike, but due to the frequency resolution used in this example they
merge to one peak. The colored lines are the results of the numerical simulations using the
different meshes. For the low frequency range, each numerical simulation under-predicts
the PSD, which might be because of the short numerical simulation time. However, the
peak corresponding to the tip gap flow and to the passing of the blades is well represented
in frequency and amplitude. In the higher frequency range up to 6 kHz the trend is
in good agreement with the measurements depicted in gray and black. At frequencies
above 6 kHz the same drop as discussed before can be seen. Up to a frequency of 1
kHz all simulations deliver nearly identical results. The discrepancies between the four
computed simulations, especially at high frequencies, are assumed to have their origin
in the different grid densities of the source region, where the coarsest mesh meets its
limitations to resolve the geometric shape of the source terms. The computed numerical
results verify the robustness of the cut-volume-cell interpolation algorithm.

(a) Different meshes used for the
computation.
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(b) Acoustic power spectral density for different
discretizations.

Figure 5: Comparison of different discretizations (from 1 the finest to 4 the coarsest).

4. CONCLUSIONS

In this paper, we presented an approach for the conservative interpolation of source
terms in a hybrid acoustic workflow. The proposed cut-volume-cell method considers
for each acoustic volume element the intersecting flow cells. Hence, the basis to
interpolate source terms, calculated on the CFD grid, to the CAA mesh was created.
Consequently, this approach improves robustness for meshes with skewed cells and
varying cell sizes, especially when the CAA mesh density becomes higher than the



CFD mesh density. Investigating the aeroacoustic simulations of an axial fan showed
that the standard interpolation procedure massively over-predicted the acoustic PSD.
However, the presented cut-volume-cell interpolation approach created results that were
in good agreement with measurements. In a last step, the robustness of the presented
cut-volume-cell interpolation was investigated using different grids in the rotating region.
Thus, the results of the finest grid, which only had 4.4 % of the elements of the coarsest
grid, were almost identical to the simulation done with the coarsest mesh.
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