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ABSTRACT

Direct simulations have been performed to study the sound field radiated due
to two-dimensional unsteady flow past a circular cylinder performing rotary
oscillations. Effects of forcing frequency and amplitude of oscillation on the
radiated sound fields have been analyzed using higher resolution dispersion relation
preserving (DRP) schemes. The computations are performed on a highly refined
structured grid at a Reynolds number Re∞ = 150 and Mach number M∞ = 0.2. The
phenomena of synchronization and non-synchronization of shedding patterns are
observed. In the synchronous region, both fluctuating loads acting on the cylinder
and their corresponding sound fields are completely governed by forcing frequency-
ratio. In the non-synchronous region, the generated sound fields exhibit modulation
phenomena such that the signal is governed by forcing frequency-ratio as well as
frequency-ratio corresponding to shedding frequency of a stationary cylinder for
the same free-stream conditions. Directivity patterns based on root mean square
(RMS ) values of disturbance pressure fields are obtained and they are found to be
dipolar nature dominated by lift dipole. Various dominant modes related to sound
field are obtained using the analysis of proper orthogonal decomposition (POD).
These POD modes have further helped us to understand the generated sound fields
in a better manner.
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1. INTRODUCTION

Flow past bluff bodies has been the topic of great interest for many researchers
and engineers. It has wide range of engineering applications such as bridge pillars,
wind turbines, skyscrapers and landing gear of aeroplane. Smooth functioning of these
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applications demands proper understanding of not only the flow features, but also the
aerodynamic noise features. During the process of vortex shedding for laminar flow past
a circular cylinder, acoustic pressure pulses (aerodynamic noise) are generated primarily
due to fluctuations in aerodynamic forces acting on cylinder surface, and the resultant
acoustic field is known to be of dipolar nature [1, 2, 3, 4].

Computational Aero-Acoustics (CAA) is a branch that involves the study of
aerodynamic noise using numerical schemes. Researchers have performed Direct
Numerical Simulations (DNS ) to obtain sound generated for laminar flow past stationary
bluff bodies such as circular, square and rectangular cylinders [5, 6, 7, 8]. However, very
few computational studies have addressed aerodynamic noise generated during flow past
oscillating bluff bodies based on DNS approach [9, 10, 11].

In the present study, two-dimensional, unsteady laminar flow past a circular
cylinder performing rotary oscillations is conducted based on DNS approach in order
to accurately resolve both flow and aerodynamic noise features. Various dominant
modes of the resultant disturbance pressure field are analyzed using proper orthogonal
decomposition analysis [12, 13].

2. METHODOLOGY

2.2.1. Problem Description

The schematic of a circular cylinder with diameter D=1 m performing periodic rotary
oscillations is shown in Fig. 1. The Reynolds number and Mach number are defined
as Re∞ = (ρ∞U∞D)/µ∞ and M∞ = U∞/a∞, respectively. Here, ρ∞, U∞, µ∞ and a∞
account for free-stream parameters such as density, velocity, viscosity and speed of sound
associated with free-stream absolute temperature T∞, respectively. The Strouhal number
of a stationary cylinder with vortex shedding frequency fo is given as S o = foD/U∞.

Figure 1: Flow over a cylinder performing rotary oscillations.

The instantaneous rotation rate Ω(t) of an oscillating cylinder is given by

Ω(t) = Ω1sin(2πS f t) (1)

where, Ω1 = 2π f fαo denotes maximum rotation rate with maximum angular displacement
as αo and forcing frequency as f f . Strouhal number based on forcing frequency f f is
given as S f = ( f f D)/U∞. Tangential velocity on the cylinder is prescribed using the
non-dimensional parameters such as frequency-ratio fr = f f / fo and forcing amplitude
A = Ω1D/(2U∞) [11]. Free stream flow is prescribed along the positive x− direction with
Re∞ = 150, M∞ = 0.2, ρ∞ = 1.12kg/m3, and T∞ = 288K.



2.2.2. Grid details and Numerical procedure

Circular cylinder is placed at the center of an O−grid topology with outer boundary
set at a radial distance r = 1500D measured from origin O. Let θ be the angle made by
a radial line with the negative x−axis as shown in Fig. 1. In order to accurately resolve
aeroacoustic noise, highly refined structured grid has been adopted near the cylinder
surface and this zone is termed as sound zone (0.5D ≤ r ≤ 100D). Coarse grid has
been chosen in the far-field and this zone is known as buffer zone (100D < r ≤ 1500D).
The schematic of grid structure has been reported in [11] and is not shown here to
avoid repetition. Convergence limits of flow parameters are dependent on choice of grid
resolution and hence, grid convergence study has also been conducted for flow past a
stationary circular cylinder [11]. Based on grid convergence study, adequate number of
grid points in the azimuthal direction (θ) and radial direction (r) are considered as 501
and 900, respectively.

Two-dimensional, unsteady compressible fluid flow equations in the conservative
form are considered along with the equation of state. [14] The equations are non-
dimensionalized using free-stream parameters. The lengths x, y and r are scaled by D.
x− and y− direction velocity components (u & v) are normalized using U∞. Density (ρ),
pressure (p), temperature (T ) and time (t) are non-dimensionalized using ρ∞, ρ∞U2

∞, T∞
and D/U∞, respectively. From here, non-dimensional parameters have been denoted as
x, y, r, t, u, v, p, ρ and T . As our computations are based on finite difference compact
schemes, the governing equations are transformed from physical space to computational
space using the method of grid transformation [14].

Non-linear convective terms and grid derivative terms are discretized using high
resolution Optimized Coupled Compact Difference (OCCD) scheme [15, 16]. Optimized
five stage Runge-Kutta (ORK5) scheme has been chosen for time integration [17].
Viscous derivative terms are discretized using traditional central difference schemes of
second order accurate.

3. RESULTS AND DISCUSSION

Computations are performed for sufficiently long duration and periodic shedding of
vortices are observed. Time averaging procedure has been conducted for more than 10
shedding cycles. Thiria et al. [18] has performed water tunnel experiments for flow over
rotationally oscillating cylinder at Re∞ = 150 and they found that the non-dimensional
shedding frequency of flow past stationary circular cylinder at fo = 0.1633. In order to
validate our results with experimental results of Thiria et al. [18], the frequency-ratio
fr = f f / fo is evaluated based on fo = 0.1633. Strouhal number of stationary cylinder
obtained from the present computations is found to be 0.182 and the corresponding
frequency-ratio (is denoted as fs) is given as fr = fs = 0.182/0.1633 ≈ 1.11. Hence,
fr = 1.11 represents the frequency-ratio corresponding to natural shedding frequency of
flow past a stationary cylinder. A detailed Validation and verification studies of flow as
well as sound field parameters are reported in our previous study [11] and are not shown
here to avoid repetition. Present DNS study is carried out on a two-dimensional domain
for various values of forcing frequency-ratio (0.0 ≤ fr ≤ 2.0) for an oscillating amplitude
A = 0.2. Mean and fluctuating parameters are evaluated and are discussed.

Time averaged lift (CL f ) and drag (CD f ) coefficients are evaluated for all values of
fr considered in the present study. The value of CL f is found to be zero for all forcing



conditions. Drag coefficient of flow over a stationary cylinder at Re = 150 is denoted as
CDo. Variation of normalized drag coefficient (CD f /CDo) with fr is shown in Fig. 2 (a).
As fr increases, normalized drag coefficient has remained almost constant and is equal
to that of a stationary cylinder case (CD f /CDo = 1.0) until fr = 0.5 and then it drops at
fr = 0.9. But in the range 0.9 ≤ fr ≤ 1.11, the value of CD f /CDo is increased gradually,
which is due to the establishment of effective synchronization between the incoming flow
and cylinder oscillation. In rest of the fr range, CD f /CDo value is almost same as that
observed for a stationary cylinder case. At fr = 0.9, the drag value (CD f /CDo = 0.92) is
relatively lower as compared to flow past a cylinder without oscillation (CD f /CDo = 1.0).

Figure 2: (a) Variation of normalized drag coefficient CD f /CDo with frequency-ratio. (b)
Variation of RMS values of l′ and d′ with fr.

Process of vortex shedding triggers fluctuations in aerodynamic forces which are
found responsible for generation of aerodynamic noise for flow past a cylinder at low
Mach numbers [1, 5]. Relative magnitudes of lift and drag fluctuations and the phase
difference between them decide the nature and strength of net radiated sound fields.
Hence, fluctuations in lift (l′) and drag (d′) coefficients have been evaluated. Figure 2
(b) represents the variation of root mean square values RMS of lift and drag coefficients
(l′RMS & d′RMS ) with frequency-ratio. The magnitudes of d′RMS are much lower as
compared to the values of l′RMS . The RMS values of d′ are almost negligible as compared
to the values of l′RMS . Variation of l′RMS with fr shows a similar trend as observed for a
normalized drag coefficient.

Figure 3 shows the variation of fluctuations in lift and drag coefficients (l′ & d′) with
time for different values of fr considered at A = 0.2. The phenomenon of modulation has
been observed for both time varying lift and drag fluctuations in the range fr < 0.9 & fr >
1.11. This region belongs to non-synchronous zone where the vortex shedding patterns
are not completely governed by forcing frequency alone. In the range 0.9 ≤ fr ≤ 1.11, no
modulation phenomenon has been found and also the shedding patterns occur at forcing
frequency alone. Similar features of synchronous and non-synchronous zones of flow
past a rotationally oscillating cylinder has already been reported in the literature. It is also
observed that for a given fr value, the magnitudes of fluctuations in lift coefficient are
much higher as compared to that of drag fluctuations. Further, amplitude of time varying
l′ is relatively higher for fr = 1.0 & 1.11 cases.

Fast Fourier transform (FFT ) of time varying l′ has been evaluated for different values
of fr and is shown in Fig. 4. In Fig. 4 (a), for a given forcing condition,the peaks of l′ are
identified at forcing frequency-ratio fr1 = fr and at the frequency-ratio fr1 = fs = 1.11
which corresponds to the natural shedding frequency observed for a stationary cylinder
case. Due to the existence of these two frequencies ( fr1 = fr & fs), modulation phenomena



Figure 3: Time variation of fluctuations in lift and drag coefficients are represented here
for different values of fr at A = 0.2.

Figure 4: Fast Fourier transform of l′(t) has been shown here for various values of fr.

has been observed. This frequency spectrum has clearly confirmed that the shedding
patterns observed in the range fr < 0.9 & fr > 1.11 are not just governed by forcing
frequency-ratio fr, but also affected by natural shedding frequency of stationary cylinder
fs. In Fig. 4 (b), FFT of l′ variation has been displayed for the range 0.9 ≤ fr ≤ 1.11,



where a single peak has been identified at forcing frequency-ratio fr1 = fr. The case with
fr = 0.0 accounts for flow past a stationary cylinder and the peak has been identified at
fr1 = fs = 1.11. It is clear that the vortex shedding patterns in the range 0.9 ≤ fr ≤ 1.11
are completely governed by forcing frequency fr for A = 0.2. Therefore, this zone is
confirmed as synchronous zone.

Figure 5: Disturbance pressure fields p′ are shown here for three different values of fr at
time t = 271.

Figure 5 shows the disturbance pressure fields (p′) obtained for indicated values of fr

at a non-dimensional time t = 271. Solid and dashed lines represent positive and negative
values of p′, respectively. In other words, regions of compression and rarefaction are
represented by solid and dashed lines, respectively. Contour levels vary from −0.025 to
0.025 with 30 equispaced levels. Disturbance pressure pulses radiate from the cylinder
surface and then they propagate away from the cylinder. Alternate shedding of vortices
from top and bottom surfaces of cylinder has triggered the generation of disturbance
pressure pulses. Further, these disturbance pressure pulses are found to propagate almost
in the normal direction of the free-stream direction. This is due to higher amplitudes of
lift fluctuations as compared to drag fluctuations. Hence, the net radiated sound must be
dominated by lift dipole as proven later using directivity patterns. The case with fr = 1.11
shows relatively more intensity than other fr cases. This is justified as the magnitude of
fluctuations in lift forces is higher in the case of fr = 1.11 as compared to other fr cases.

Figure 6 (a) shows the variation of p′ with time at a location (r, θ) = (75, 90o) for the
cases with fr = 0.5 and fr = 1.11. Modulation in p′ has been observed for fr = 0.5 case,
as the chosen value of fr is in non-synchronous region. However no such modulation has
been observed for fr = 1.11 case which lies in synchronous region. Figure 6 (b) represents
FFT s of time varying disturbance pressure profiles extracted for these two fr values at
(r, θ) = (75, 90o). For fr = 1.11 case (in synchronization region), the Fourier peak is
observed only at forcing frequency-ratio fr1 = fr = 1.11, while for fr = 0.5 case (in non-
synchronization region), the Fourier peaks are identified at both forcing frequency-ratio
( fr1 = fr = 0.5) as well as at the frequency-ratio which corresponds to natural shedding
frequency of a stationary cylinder ( fr1 = fs = 1.11).

According to Curle’s analogy, the acoustic pressure p′ in the far-field decays as p′ ∝
r−0.5 [1,5]. Fourier amplitudes of p′(t) corresponding to the dominant frequency peak are
extracted along the radial distance at an azimuthal angle θ = 90o. Figure 7 (a) displays
the variation in Fourier amplitude of disturbance pressure A(p′) with radial distance for
indicated values of fr. Decay of A(p′) with radial distance r obeys the theoretical decay
rate p′ ∝ r−0.5 over a long distance r ≤ 100. The amplitudes of p′ are much higher for



Figure 6: (a) Variation of disturbance pressure with time at (r, θ) = (75, 90o) is shown
here for indicated values of fr. (b) FFTs of these time varying disturbance pressure
profiles are displayed.

Figure 7: (a) Decay of Fourier amplitudes (corresponding to the dominant frequency
peak) of disturbance pressure A(p′) with radial distance at θ = 90o has been shown.
Reference theoretical decay rate is denoted as p′ ∝ r−0.5 [1, 5]. (b) Directivity patterns
based on RMS values of p′ evaluated at r = 75 are shown for indicated values of fr. (c)
Variation of radiated sound power Pw (evaluated at r = 75 based on p′RMS ) with fr has
been displayed.

fr = 1.0 & fr = 1.11 cases as compared to other values of fr. In the non-synchronous
region ( fr > 1.11 & fr < 0.9), the magnitude levels of A(p′) are almost same and equal to
that of a stationary cylinder case represented as fr = 0.0, although the modulation patterns
observed for l′ and d′ are significantly different.

Figure 7 (b) shows the directivity patterns based on RMS values of p′ obtained at
r = 75 for various values of fr. Similar to the stationary cylinder case (indicated as



fr = 0.0), directivity patterns of net radiated sound fields of an oscillating cylinder are also
dominated by lift dipole as magnitudes of lift fluctuations are much higher as compared
to magnitudes of drag fluctuations. Sound field strength is higher for fr = 1.0 & fr = 1.11
cases as compared to other values of fr. Net radiated acoustic power (Pw in dB) has been
evaluated using the RMS values of p′ obtained at r = 75 for different values of fr as
shown in Fig. 7 (c). There is no much significant variation of Pw in the non-synchronous
region and relatively higher acoustic power radiation is observed at fr = 1.0 & fr = 1.11.
These patterns are similar to the patterns shown in Fig. 7 (b).

Next, the analysis of Proper Orthogonal Decomposition (POD) based on the method
of snapshots has been performed for disturbance pressure fields to obtain dominant POD
modes and the procedure is similar to the previous studies [11, 15, 12, 19, 13, 20]. The
disturbance pressure field can be represented as,

p′(x, y, t) =

N∑
n=1

an(t) φn(x, y) (2)

where, N is number of solution files (snapshots) as considered in the method of snapshots.
Time dependent POD amplitudes and eigenfunctions are denoted by an(t) and φn(x, y),
respectively. The POD analysis also quantify importance of various modes based on
respective energy content as given by eigenvalues (λk) of a covariance matrix Ri, j formed
by p′.

Figure 8: First four dominant POD modes (φn(x, y)) and corresponding time varying
POD amplitudes (an(t)) are obtained for disturbance pressure fields at A = 0.2. Frames
(a) and (b) display the POD results for the cases with fr = 1.11 and fr = 2.0, respectively.
Positive and negative values of POD modes are represented by solid and dashed lines,
respectively.



Figure 8 shows the first four dominant POD modes φn(x, y) and their corresponding
POD amplitudes an(t) of disturbance pressure fields obtained for the cases with fr =

1.11 and fr = 2.0 at A = 0.2. Based on the values of λk, the first four POD modes
contribute 99% and 78% to the disturbance pressure fields of fr = 1.11 and fr = 2.0
cases, respectively. For fr = 1.11 case, the values of frequency-ratio observed for a1 & a2

and a3 & a4 are fr = 1.11 and 2 fr, respectively. The first two POD modes of fr = 1.11
case propagate almost in the vertical direction and the next two POD modes propagate
along horizontal directions. Hence, the first two POD modes contribute to lift dipole and
the drag dipole is contributed by next two POD modes. In fr = 2.0 case, the frequencies
of a1 & a2 and a3 & a4 are identified as fs = 1.11 and 0.0326, respectively. In case of
fr = 2.0, the first two POD modes contribute to lift dipole whereas the next two POD
modes corresponds to disturbance pressure fields with modulation frequency.

4. SUMMARY AND CONCLUSIONS

In the present study, numerical simulations have been performed to characterize the
sound fields generated during flow over a circular cylinder subjected to rotary oscillations
using direct simulations. Flow and sound field characteristics are resolved sufficiently
in the range r ≤ 100. Fluctuations in lift and drag forces are related to the generated
sound field intensities. Radiated sound fields obey theoretical decay rate in the far-field
(as shown in Fig. 7 (a)). In the synchronous region, the generated sound fields are dictated
by forcing frequency-ratio, whereas in the non-synchronous region, they are governed by
both natural shedding frequency of stationary cylinder as well as forcing frequency of
oscillation. Modulation phenomenon has been observed for the aerodynamic forces (lift
and drag fluctuations) and disturbance pressure fields obtained in the non-synchronous
region. The generated sound fields exhibit dipolar nature dominated by lift dipole for all
values of fr considered in the present study. The generated sound field intensity is found
maximum at fr = 1.11. Further, the POD analysis of disturbance pressure fields has been
used to identify and quantify several dominant POD modes and their corresponding POD
amplitudes.
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