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ABSTRACT 

The present paper describes a numeric technique based on the solving non-

stationary differential equation system of interaction between solid and oscillating 

fluid in a pipeline. The finite element model of pipe base on used space-time joint 

type elements. The joint type of finite element is used for modeling vibroacoustical 

interaction between solid and oscillating fluid. Time response of the pipeline 

vibration are resulted from this technique. The boundary conditions for fluid - 

parameters combination of complex pressure oscillation amplitude of pipeline inlet 

section, complex pressure oscillation amplitude of pipeline outlet section, complex 

velocity oscillation amplitude of pipeline inlet section, complex velocity oscillation 

amplitude of pipeline outlet section, load impedance, input impedance. The 

boundary conditions for solid are pipeline supports. The pipeline vibration 

insulator with MR material damper consider like supporting for pipeline and 

modeling by differential equation system. This equation system is substituted in 

the weighted residuals and Galerkin methods approximating equations like a 

boundary conditions. The developed technique allows calculate vibroacoustical 

characteristics of complex configuration pipeline system with the different type of 

units. 
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1. INTRODUCTION 

Pipelines are widely used in the different types of system. There are power 

plants, equipment’s, mobile machines, process pipes and other. Pressure pulsation and 

vibration has a great impact on reliability, durability, efficiency and other operation 

parameters of pipe system.  
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The pipe vibration must be determined before it can be dealt with effectively.  

Such studies has a great importance to the different industries where pipes have 

to withstand high pressure [1-3]. 

Flow-induced vibration analysis of pipes conveying fluid has been one of the 

attractive subjects in structural dynamics [4].  The analytical and computational models 

are used for describing the dynamics of a pipeline system under the force excitation by 

oscillating fluid flow [5]. Most of them developed for the straight pipes. 

Numerical method is widely used for calculation of vibroacoustical 

characteristics of complex configuration pipe system [6-11]. 

Extensive studies in this area subject to different boundary conditions and 

loadings [12-15]. In most cases, the corresponding ordinary differential motion 

equations of fluid conveyed pipes are deduced using Galerkin’s method in Lagrange 

system. Then many numerical methods, such as transfer matrix method, finite element 

method, perturbation method, Runge-Kutta method, and differential quadrature method, 

are applied to solve these equations.  One of the major factors affecting the dynamic 

behavior of pipes is the boundary conditions [16]. 

In this paper considers two different types the boundary conditions for pipe: 

rigid supports of the ends of pipe and MR damper installed in the right end of pipe and 

the rigid support on the left end.  These boundary conditions are used for calculating  

differential equation system has been derived from the mathematical model of the 

complex configuration piping system dynamics [17]. The developed technique allows 

calculating a complex configuration pipe system. The technique is developed for 

pipeline diameter much smaller than acoustic wave-length in a fluid.  

 

2. BASIC GOVERNING EQUATIONS 

The technique is based on the solving differential equation system of interaction 

between solid and oscillating fluid in the pipeline. The differential equation system was 

derived from the mathematical model of the complex configuration piping system 

dynamics [18].  

The assumption of the model is that the piping system is split into finite length 

parts with the constant inner and outer piping radiuses, normal and binormal curvature 

radiuses within their limits. A differential equation system is derived for each part to 

describe its vibroacoustic parameters. The equation system includes: the equilibrium 

condition for a curvelinear pipeline part, elastic displacements dependency from forces 

and moments, acting bulk force equations, and the expression for fluid motion in elastic 

pipe. The pipeline is considered like a beam. Thus, the flexural vibrations are 

considered to be prevailing, and the radial cross-section deformations are neglected. 

The mathematical model is expressed as equation system: 
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w0 and w is the constant and variable parts of the fluid velocity; p  and p  is the 

constant and variable parts of the fluid pressure;   is a coordinate, measured along the 

centroidal line of the pipeline sections from zero point to the arbitrary cross-section;   



is the non-dimensional time;   ,e1  is a unitary vector, binormal to the piping center 

line;   ,e2  is a unitary vector, normal to the piping center line;   ,e3  is a unitary 

vector, binormal to the piping center line; iu  is the vibration displacement in   ,ei  

direction;   is a nonplanar center line curvature vector. 

As an example, consider solving differential equation system for pipe with the 

axial line lying in one plane under force excitation by oscillating fluid flow. There is 

technique used new 7-node finite element [19].  

The differential equation system was derived from the mathematical model of 

the complex configuration piping system dynamics [20].  

The mathematical model is expressed as equation system: 
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where   is a nondimensional coordinate, measured along the centroidal line of the 

pipeline sections from zero point to the arbitrary cross-section;   is the nondimensional 

time; 
21

2

mm

m
n


 ;  sm1  stands for the pipe mass per meter;  sm2  is the fluid mass per 

meter; 3 is the piping center line flexure in a plane, normal to 3e ; l  is the pipeline 

length; w  is a vector of a nondimensial working fluid flow velocity; p  is the 

nondimensional pressure; 1u  is the vibration displacement in  t,se1  direction; 2u  is the 

vibration displacement in  t,se1  direction; 
 


4

1
5u

H  is the friction model where the 

deformation component, directly proportional to the deformation speed, or the rate of 

intrisctic restoration force; hEIН  ; I inertia moment.  

Since the Equation 2 has only one variable, explicitly differentiable with respect 

to time - 1u . It would be appropriate to solve it for this argument. All other variables 

can be specified from the solution, found for 1u .  

 

3. GALERKIN FINITE ELEMENT METHOD 

Solution algorithm for the second equation in the Equation 2 used partial 

discretization and weighted residual methods [15, 17-19] 







1M

0m
mm11 )(N)(aûu       (3) 

where )(Nm   are the basis functions. 

The weighted residuals method approximating equation: 
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
   is an approximation residual for the domain; 

rMuR 1Г    is an approximation residual for the boundary conditions; ll W,W  are the 

linearly independent weights. 

The Lagrange polymonial of 6
th

 order was used as the basis functions, in order to 

achieve the accurate solution (Figure 1, 2). 

 

 
Figure 1.  One-dimensional element and the Lagrange basis functions of 6

th
 order. 

 

 
Figure 2. One-dimensional 7-node elements at the spatial domain. 

 

The differential equation system in vectorial form: 
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  (5) 

The Equation 5 has been solved by the method of basis functions in time domain 

using the Crank-Nicolson scheme [15].  
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4. BOUNDARY CONDITIONS 

 For the calculating flow-induced vibration was defined pressure pulsation along 

pipe and pulse transit time. For the steady-state condition, the boundary conditions for 

the hydraulic subsystem are defined by parameters: fluid oscillation frequency f , 

pressure pulsation amplitude at the inlet section of the pipe, load impedance Zload. 

The instantaneous values of fluid pressure and velocity was defined from 

amplitude-phase-frequency response of pipe with unmatched load and complex load 

impedance loadZ  [20] 

 
       sjchsjsh

Z

Z

1

o,jp

s,jp

load

wave 






 ,  (7) 

  - damp coefficient;  - phase coefficient;  - wave circular frequency; waveZ  - wave 

impedance of pipe. 
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The boundary conditions for the mechanic (piping) subsystem are defined by 

differential equations, describing the piping supports. 

The left end of a pipe has a rigid support. The right end of pipe has a MR 

(Metal–Rubber Elastic Porous Material) damper.  

The damper is widely used for reduce the vibration in a pipeline systems [21]. 

The MR material is a two-component heterogeneous system. One component 

consists of a three-dimensional skeleton made of pieces of wire spirals laid with mutual 

crossing and pressed in a mold up to the size of the finished product. The second 

component consists of the free space between the wire, i.e., it is a system of 

interconnected through pores of various sizes [22,-24] 



  
Figure 3.  Scheme of the metal rubber(MR) coating 

 

Consider the boundary conditions for the left end of pipe. In this case, at 0  and 
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Discard the singular index of the u  parameter. The boundary conditions for the 

analyzed finite elements model may be expressed as follows: 
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The boundary conditions for the right end of pipe were installed damper can be 

write:  
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where 
E

D


 ,   stress tensor. 

Rewrite Equation 13 with one variable 1u  
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Normalized local coordinate  more convenient for further calculations. Make 

up a coordinate    that describes positions insted of nondimensional coordinate   . 
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 11            (15) 

eh  - element length, 
e
с  - coordinate of element center. 

Substitute Equation 3 into  Equations 12 and 14   
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Initial conditions defined only for the mechanical subsystem, because of steady 

state oscillations. Initial conditions for the mechanical subsystem are the variable 1u  

and its derivative at the initial time 0a)0(a 0  , 0)0(
dt

da
 . 

Equation 16 are substituted in Equation 5. 

 

5. NUMERICAL RESULTS 

As a case in point, take the pipeline with the following parameters: l=0,4 m; 

d=0,004 m; δ=0,0006 m; ρ=7800 kg/m
3
, E=2·10

11
 Pa; R=0,23 m; where d stands for the 

outside pipe diameter, δ  stands for wall thickness; R is the curvature radius. 

 

  
a) b) 

Figure 4. Piping supports a) rigid supports, b) rigid support and MR damper 

 

The pipeline is loaded with the steady-state fluid oscillations with the following 

parameters: f=250 Hz, pвх1=10
5
 Pa.  Fluid parameters: ρfluid=870 kg/m

3
, с=1300 m/s. 

Let take one seven-node element and a time step 014,0t   for the calculations. 

The initial data, required for the analyzed Crank-Nicolson scheme, is prescribed as 

follows: 

0u)0(u
0

11  , 0)0(
dt

du1      (17)  

The following values are chosen: 
4

1
  ,

2

1
 . The scheme is unconditionally 

stable with these values and does not produce the artificial numeric attenuation. 

 



 
 

Figure 5. Time response and amplitude spectrum of the non-dimensional normal 

vibration displacement in the 4 node 2.0  with the friction parameter Н=2 
 

 
Figure 6. The non-dimensional normal vibration displacement in the 4 node 2.0  

with the friction parameter Н=2 

 

This type of pipe fixation consider as example for show how we can install the 

MR damper in the pipe system for our finite element model. In the Figure 5 are shown 

time response and amplitude spectrum of the non-dimensional normal vibration 

displacement in the 4 node 2.0  with the friction parameter Н=2. The non-

dimensional normal vibration displacement in the 4 node 2.0   with the friction 

parameter Н=2 is shown in the Figure 6. Vibration amplitude for the pipe has MR 

damper on the right end higher than for the pipe with rigid supports because on the right 

end a pipe has elastic support. 

 

6. CONCLUSIONS 

 The paper describes a numeric technique based on the solving non-stationary 

differential equation system of interaction between solid and oscillating fluid in a 

pipeline. The finite element model of pipe base on used space-time joint type elements..  

As an example, consider solving differential equation system for pipe with the axial line 

lying in one plane under force excitation by oscillating fluid flow. The boundary 

conditions for fluid – fluid oscillation frequency f , pressure pulsation amplitude at the 

inlet section of the pipe, load impedance Zload. The boundary conditions for solid are 

different types of pipeline supports.  

The paper considers two different types of pipeline supports: rigid supports of 

the ends of pipe and MR damper installed in the right end of pipe and the rigid support 

on the left end. 

The pipeline vibration insulator with MR material damper modelling by 

differential equation system. This equation system is substituted in the weighted 

residuals and Galerkin methods approximating equations like a boundary conditions. 



The developed technique allows calculate vibroacoustical characteristics of complex 

configuration pipeline system with the different type of units. 

The pipeline vibration was calculated for the 2 types of supports. Calculating 

results was comparing each other. Time responses of the pipe vibration are resulted 

from this technique.  
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