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ABSTRACT

As lightweight and stiffened structures, aircraft are prone to vibration. Constrained
Layer Damping (CLD) treatment is a popular method to increase the vibration
damping of such structures. Constrained by a top and bottom layer, the viscoelastic
core layer is forced under shear strain and causes a dissipation of vibrational energy.
However, the damping behaviour of viscoelastic materials is highly dependent on
frequency and temperature, and has to be considered during the design process.
In this paper, the influence of frequency and temperature on the damping behaviour
of bromobutyl rubber is presented. The material is modelled by a generalized
Maxwell model, which can be implemented in finite element (FE) calculations for
damping layout. Additionally, a novel setup for local CLD treatment is introduced,
causing higher shear strain in the core layer. The damping results are compared to
those of different damping treatments. Finally, the impact of bromobutyl rubber
on the damping capability of the local CLD treatment is examined for various
excitation frequencies and temperature levels.
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1. INTRODUCTION

In the construction of aeronautic structures, lightweight design is mandatory. Lightweight
structures, as frames and stringers, are characterized by having high stiffness and low mass
at the same time, as a consequence, they are prone to vibration. Especially an aircraft
fuselage is composed of frames and stringers, visualized in Figure 1.
Vibrations introduced into the fuselage are transmitted as structure-borne sound.
Structure-borne sound may radiate at fuselage skin and contribute to the cabin interior
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Figure 1: Fuselage composition of Flight-LAB-demonstrator

noise. The transmission of structure-borne noise at steady-state excitation, e.g. by
turbulent boundary layer or engine induced vibration, can be reduced by increasing
damping of the frames. For simplicity, these frames are initially considered as free-free
supported straight beams. Damping increase can be achieved, by forcing an applied
viscoelastic material into shear strain. A popular layout for vibration damping is
the Constrained Layer Damping treatment (CLD), where a viscoelastic core layer is
constrained between a stiffer base and face layer. Since a full coverage CLD treatment
causes too much weight penalty, local damping patches shall be placed at proper positions
of the beam and connected to each other, in order to increase shear strain. Considering
a free-free vibrating beam, shown in Figure 2, points on the neutral fibre of the beam
only perform vertical displacement, while points located on top or bottom surface also
perform horizontal displacement due to the inclination of the neutral fibre. Using the
fact, that the centre of the beam suffers only vertical displacement, a simple straight and
in-plane cantilever beam model can be derived.

Figure 2: Idea of an improved local CLD treatment

Nevertheless, the essential component for damping layout is the viscoelastic material.
Its damping properties change considerably under different conditions as excitation
frequency and temperature. In order to design an appropriate damping layout of a
structure, these influences need to be considered as well.
The main objective of this paper is to quantify the damping capabilities of the
above-presented local CLD treatment with respect to frequency and temperature
dependence. First, the theoretical background of frequency and temperature dependent
viscoelastic material modelling as well as the integration in finite element (FE) analysis
is demonstrated. Next, a simple parameter study is performed, pointing out the issues of
the local CLD treatment. Afterwards, a comparison to other well established damping
treatments is presented. Finally, a realistic viscoelastic material is introduced, showing
the property changes and their impact on the damping capability of the local CLD
treatment.



2. THEORETICAL BACKGROUND OF VISCOELASTIC MATERIAL
MODELLING

In this section, the basics of idealized viscoelastic material modelling are exemplified.
The essential properties are demonstrated and a formulation of the material behaviour in
frequency domain is provided. Additionally, the temperature dependence on the material
behaviour is implemented in the material model. By using the finite element method
(FEM) it will be shown, how viscoelastic properties can be integrated to physically model
local viscoelastic damping and to establish a global damping matrix for the structure.

2.1. Linear viscoelasticity in frequency domain

Under the assumption of a harmonic excitation, a viscoelastic material behaviour
can be described in terms of a complex modulus, which is a function of the excitation
frequency Ω. If constant temperature is assumed, the complex shear modulus G∗ can be
written as:

G∗(Ω) = G′(Ω) + i G′′(Ω) (1)

The real part of the complex notation G′ is the storage modulus and denotes the elastic
behaviour of the material. In contrast to it, the imaginary part G′′ is the loss modulus and
denotes the viscous or dissipative properties. Both, the real and imaginary part can be
expressed by using the parameters of a generalized Maxwell model, often referred to as
Prony series. The composition and effects of a generalized Maxwell model are examined
in [1] and [2]. The equation for the storage modulus leads to

G′(Ω) = G0

1 − n∑
i=1

αi −
αi τ

2
rel,i Ω2

1 + τ2
rel,i Ω2

 , (2)

where G0 is the instantaneous shear modulus at infinitely high frequency, τrel,i the
relaxation time and αi the so called relative modulus [3]. The equation of the loss
modulus is formulated as [3]:

G′′(Ω) = G0

n∑
i=1

 αi τrel,i Ω

1 + τ2
rel,i Ω2

 (3)

The relation of both parts defines the loss factor η:

η(Ω) =
G′′(Ω)
G′(Ω)

(4)

Concerning damping layout, the loss factor is the most important parameter as it quantifies
the energy dissipation capability of a material. It is also known as the tan δ resulting from
dynamic mechanical analysis (DMA).

2.2. Temperature dependence on viscoelastic material properties

The temperature dependence on material properties are taken into account by different
shift factors. There are various approaches found in the literature regarding the shift
factor calculation, e.g. in [4]. However, it should be taken into account, that the selection
of the approach for the shift factor calculation highly depends on the given material and
considered temperature region. In the scope of this paper, the Williams-Landel-Ferry



(WLF) as well as the Arrhenius approach are used and briefly presented in the following.
For analysing the material properties’ dependence of the temperature, two shifts have to
be considered:

– Horizontal shift along the frequency axis due to thermal activated rearrangements
and higher reaction rate on a molecular level

– Vertical shift along the material property axis due to changes in the type and amount
of molecular processes

The frequency shift is defined by a horizontal shift factor ξH, resulting from the empirical
WLF equation with experimentally determined constants C1 and C2 relating to a
reference temperature T0 [5]:

log (ξH(T,T0)) = −
C1 · (T − T0)
C2 + T − T0

(5)

For the description of the vertical shift, the Arrhenius approach is used. The relation
between the experimentally determined activation energy EA concerning a temperature
shift yields the vertical shift factor ξV [5]:

log (ξV(T,T0)) =
0, 43 · EA

R

(
1
T
−

1
T0

)
(6)

The parameter R is the universal gas constant. Considering a reference state
S 0(T0, f0,G′0,G

′′
0 , η0), the corresponding shifted state S 1(T1, f1,G′1,G

′′
1 , η1) at an

arbitrary temperature T1 can be determined. If the vertical shift factors for storage and
loss modulus are assumed to be unequal, the shift is calculated by Equations 7 and 8:

f1 = f0 · ξH (7)

G′1( f1) = G′0( f0) · ξV,G′ , G′′1 ( f1) = G′′0 ( f0) · ξV,G′′ , η1 =
G′′1
G′1

(8)

A typical temperature shift of the storage modulus, loss modulus (a) and loss factor (b) of
a virtual viscoelastic material, modelled with a generalized Maxwell model, is presented
in Figure 3. It can be seen in both diagrams, that the characteristic course of all properties
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Figure 3: Complex modulus (a) and loss factor (b) during a temperature shift



stays the same, but shifted in horizontal and vertical direction. Especially Figure 3 (b)
points out both shift directions clearly, since the maximum of the loss factor from the
reference state S 0 decreases at a higher frequency for a different temperature (S 1).

2.3. Implementation of viscoelasticity into the finite element method

In order to integrate viscoelastic material properties into a spatial discretized
continuum, a transformation from the one-dimensional material model into a three-
dimensional is mandatory. Assuming isotropy as an additional material property, the
transformation is carried out by Hooke’s law. The relationship between stresses σ and
strains ε is determined by an elasticity matrix E [6]:

σ = E · ε =



σxx

σyy

σzz

τxy

τxz

τyz


=

E
(1 + ν)(1 − 2ν)



1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 0
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2


·



εxx

εyy

εzz

γxy

γxz

γyz


(9)

The stress and strain vectors include their corresponding spatial normal parts σ and ε, as
well as the spatial shear parts τ and γ. Furthermore, the Young’s modulus E and the shear
modulus G are both related to the Poisson’s ratio ν [6]:

E = 2G (1 + ν) (10)

At this point it should be noted, that the elasticity matrix consists of complex entries, as
far as viscoelasticity is applied. In this case, the elasticity matrix can be divided up into a
real and imaginary part, representing storage and loss behaviour:

E∗(Ω,T ) = E′(Ω,T ) + i E′′(Ω,T ) (11)

Based on the equivalence of virtual work of external loads with the virtual work of internal
stress and strain, a complex stiffness matrix for a finite element can be assembled:

K∗E(Ω,T ) =

∫
VE

(
ΘϕT

)T
E∗(Ω,T )ΘϕT dVE (12)

Θ denotes the differential operator matrix, whereas ϕ conform to the matrix of shape
functions. Considering the complex notation of Equation 11, Equation 12 yields a real
element stiffness matrix as well as an hysteretic element damping matrix DE:

KE(Ω,T ) =

∫
VE

(
ΘϕT

)T
E′(Ω,T )ΘϕT dVE (13)

i DE(Ω,T ) = i
∫
VE

(
ΘϕT

)T
E′′(Ω,T )ΘϕT dVE = i η(Ω,T ) KE(Ω,T ) (14)

Using the Boolean matrices BE, local viscoelastic elements are sorted into global stiffness
and hysteretic damping matrices of the whole structure:

K(Ω,T ) =
∑

E

BT
E KE(Ω,T ) BE (15)



i D(Ω,T ) = i
∑

E

BT
E DE(Ω,T ) BE (16)

Due to this procedure, it is possible to integrate viscoelastic material as local dampers for
example in composite structures.

3. CHARACTERISTICS OF LOCAL CLD TREATMENT

For the following analyses, the modal analysis application of commercial FE software
ANSYS 17.2 is used. Two-dimensional structural solid elements called PLANE182 are
chosen for element modelling as they have the feature to realise damping by a loss factor
with respect to frequency and temperature dependence, which is needed in the later part
[3]. However, under stationary condition, the material properties shall be considered as
constant for comparability purpose. In the subsequent subsections, the modal loss factor
ηk is used for damping estimation. Using the modal strain energy method [7], the modal
loss factor is calculated as

ηk =

∑n
j=1 η j,k U j,k

Utotal,k
, (17)

where η j,k is the loss factor and U j,k the modal strain energy of layer j at mode k, while
Utotal,k denotes the total modal strain energy of the whole system at mode k. The modal
loss factor can be converted into The conditions for a good loss factor estimation with the
modal strain energy method are mentioned in [7] and considered as fulfilled.

3.1. Parameter study

The basic structure of the simulation is a simple aluminium cantilever beam with a
rectangular cross section, as shown in Figure 4. By adding viscoelastic material with an
aluminium face sheet in various configurations, the vibration of the beam is damped. The
viscoelastic material is assumed to be in perfect contact with the beam and the face sheet.

lbeam = 1000 mm

z

x
y

xBC

lpatch = 10 mm

b = 40 mm

hbeam = 10 mm
hvisco = 1 mm
h f ace = 1 mm

Figure 4: Geometrical setup of the local CLD treatment for the parameter study

The initial values for aluminium and the viscoelastic material are listed in Table 1.
While frequency and temperature have an influence on material properties, the Youngs’s
modulus as well as the loss factor of the viscoelastic material differ during the parameter
study in order to examine their effect on the damping capability separately.
Another parameter is the location of the damping patch, represented by the coordinate of
the boundary condition xBC at the centre of the patch. During the parameter study, the
damping patch is placed at various positions from the fixed to the free end of the beam.
The shown auxiliary mechanism is assumed to be massless and can be realised in the



Table 1: Initial properties of aluminium and a virtual viscoelastic material

ρ [ kg
m3 ] E [Pa] ν [−] η [−]

Aluminium 2700 7, 1 · 1010 0,33 0,005
Viscoelastic material 1000 5 · 108 0,499 0,8

FE model by inserting the boundary condition in terms of a nodal constraint, blocking
displacement in x-direction. The influence of the Young’s modulus and the location of
the boundary condition on the modal loss factor of the 4th mode are visualized in Figure
5. Mode 4 is chosen as a representative for the occurring effects. All these effects can be
also detected for lower modes, but with a different intensity.
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Figure 5: Modal loss factor of the damped beam (u.) due to stiffness variation and
normalized displacements of the undamped beam at the surface (b.) for the 4th mode

It can be seen in the upper graph of Figure 5, that four local maxima occur. Regardless
of the behaviour near the free end, (x ≥ 0, 9 m), it is possible to notice that the stiffer the
viscoelastic material, the higher the modal loss factor at its peaks. If the material is too
soft, almost no increase of the modal loss factor is detected. Comparing the upper graph
with the graph of the normalized x-displacement of the undamped beam, a correlation can
be identified. Highest damping appears at locations with highest x-displacement, which
are the vibration nodes of the y-displacement. Hence, a rule of thumb can be derived,
that a damping patch has to be placed at such positions in order to obtain maximum
damping values. This enables a targeted damping layout for selected modes of an arbitrary
structure. The different behaviour at the free end may result from the increasing stiffness
in combination with the boundary condition. If the stiffness is too high, shear deformation
in the viscoelastic layer is hardly possible. In this case, the free end rather acts as another
boundary condition and impacts the mode shape. If it is too low, the loss modulus will
also become low and in consequence, no vibration energy is dissipated. From this point
of view it can be derived, that an optimal stiffness exists for a damping patch positioning
at the free end.
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Figure 6: Modal loss factor due to loss factor variation for the 4th mode

A different behaviour can be observed for the loss factor variation, illustrated in Figure 6.
The loss factor acts like a proportional factor. The higher it is, the higher is the resulting
modal loss factor. Compared to the stiffness variation, the effect of the loss factor is not
influenced by the location of the boundary condition.

3.2. Comparison to existing damping treatments

In order to demonstrate the effectiveness of the local CLD treatment, a comparison
between different damping treatments is presented. For this purpose, the damping
capability of full coverage Free Layer Damping (FLD) as well as full coverage CLD
treatment is additionally evaluated. Each simulation is performed, applying the material
properties from Table 1. For the FLD treatment, the thickness of the viscoelastic layer
from Figure 4 is chosen to be hvisco = 2 mm. In the case of CLD, the full beam is
covered with a viscoelastic layer and a face sheet, but no auxiliary mechanism is applied.
Therefore, the thickness of the viscoelastic layer and face sheet, shown in Figure 4, is
used. The scope of the comparison includes the modal loss factor at the first four modes.
The results are outlined in Figure 7. For local CLD treatment, the maximum achievable
modal loss factor values are displayed, which result from the parameter variation of xBC.
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Figure 7: Modal loss factor of different damping treatments

From Figure 7 it becomes obvious, that the local CLD treatment has the best damping
capability at all modes. Especially in the first mode the difference is significant. The
estimated modal loss factor is about η1 = 0.18, which corresponds to a modal viscous
damping ratio of D = 9%. However, the effectiveness in terms of the modal loss factor
decreases with higher modes. A reason for this is the decreasing x-displacement of the
beam at higher frequencies. As a result, less shear strain is generated in the viscoelastic
layer and less vibration energy is dissipated.
Another advantage of the local CLD treatment is based on the damping increase relating



to the volume gain. With only 0.2% of volume gain it is possible to obtain superior
damping values, while the damping capability with 20% volume gain for full coverage
FLD and CLD treatments is rather poor. It has to be considered, that the presented local
CLD treatment is massless and idealized though. A realistic auxiliary mechanism, as the
one shown in Figure 4, would further increase the volume gain. The effectiveness can be
increased by geometrical optimization of the damping patch otherwise.

4. CONSIDERATION OF FREQUENCY AND TEMPERATURE DEPENDENCE

After the damping capability of the local CLD treatment has been examined with
constant material values, the effect of a realistic, frequency and temperature dependent
viscoelastic material is presented in the following sections.

4.1. Material properties of bromobutyl rubber

In cooperation with the German Institute of Rubber Technology (Deutsches Institut
für Kautschuktechnologie e.V.) a dedicated mixture of bromobutyl rubber for aeronautic
applications as vibration damper has been developed. The frequency dependence is
modelled by twelve parameter sets of the generalized Maxwell model, the temperature
dependence by the presented WLF and Arrhenius approaches. In Figure 8, the essential
material properties in terms of damping layout are illustrated.

(a) (b)

Figure 8: Shear storage modulus (a) and loss factor (b) of bromobutyl rubber

For the shear storage modulus in Figure 8 (a), a considerable reduction can be detected,
as temperature rises. Maximal stiffness of G′ = 4, 5 · 108 Pa exists at lowest temperature
of T = −50 ◦C and highest frequency of f = 500 Hz. At a temperature of T = 60 ◦C, the
shear storage modulus is more than thousand times less than at T = −50 ◦C.
A more complicated behaviour can be observed for the loss factor in Figure 8 (b). In
the temperature range from −40 ◦C ≤ T ≤ 10 ◦C, a region of highest loss factor values
occurs. Within that range, the maximal loss factor values are about η = 0.9. However,
the loss factor drops significantly outside that region. Especially for high temperatures in
combination with low frequencies, the loss factor is close to zero. The same behaviour
appears at low temperature and high frequency. Considering the results from the
parametric study, bromobutyl rubber is a proper damping material for temperature
regions below zero in the mid-frequency range. These conditions appear especially in



cruise flights, as the outdoor temperature is far below 0 ◦C and when the vibroacoustic
performance of the fuselage up to 500 Hz is under consideration. On the other hand, the
usage of bromobutyl rubber should be avoided for high temperatures, since it provides
poor damping capability.

4.2. Impact of bromobutyl rubber on local CLD treatment

As presented in the previous section, the viscoelastic material properties vary significantly
with temperature and frequency and the resulting impact on the damping capability of the
local CLD treatment needs to be examined. For the following analysis, the setup from
Figure 4 is modified. This time, the length of the damping patch as well as the thickness
of the aluminium face sheet is increased. In order to ensure comparability during the
analysis, the damping patch cuts off with the free end, as demonstrated in Figure 9.

lbeam = 1000 mm

z

x
y

lpatch = 100 mm

b = 40 mm

hbeam = 10 mm
hvisco = 1 mm
h f ace = 2 mm

F̂ = 1 N

Figure 9: Modified geometrical setup of the local CLD treatment

Since is it not possible to include temperature and frequency dependence within a modal
analysis study in ANSYS 17.2, a harmonic response analysis with a vertical force at the
free end is performed. By using the peak-fit method [8], modal damping values of the
first four identified eigenfrequencies are extracted from the recorded frequency response
function. Thermal expansion of the components is neglected. The results are visualized
in Figure 10. It should be noted, that the eigenfrequencies displayed at the x-axis are
average values. Given the fact that stiffness changes due to temperature variations,
eigenfrequencies also change. While the change is rather low for mode 1 and 2, the
maximum difference within the fourth mode is approximately 20 Hz. Additionally, the
damping due to structural damping of the aluminium is drawn with a dashed horizontal
line. In Figure 10 it can be seen, that the impact of both temperature and frequency on
the damping capability is substantial. Taking the first mode, the damping ratio can vary
from no viscoelastic damping (T = −50 ◦C) to 4, 5% damping ratio (T = 0 ◦C). By
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Figure 10: Influence of frequency and temperature on modal damping capabilities



considering each temperature, a decrease of the damping ratio is detectable with rising
frequency, as the shear deformation in the viscoelastic layer decreases. An exception is
temperature T = 30 ◦C, where the damping ratio of mode 2 is higher than at mode 1.
Also the order of highest damping ratios varies with frequency. While the second highest
value occur at a temperature of T = −20 ◦C at mode 1, the corresponding damping ratio
for mode 2 is just third highest. Only the damping ratio of both lowest as well as highest
temperature stay in the same order.
In order to find an explanation for the observed phenomena, an examination of the
viscoelastic material properties from top view, shown in Figure 11, is helpful. The
horizontal lines indicate the particular eigenfrequencies, the vertical ones are isothermal
lines.

(a) (b)

Figure 11: Top view on the contours of the shear storage modulus (a) and loss factor (b)

An explanation for smallest damping ratios at the lowest and highest temperature can
be drawn from both images of Figure 11. While the storage modulus is maximal, the
corresponding loss factor is minimal at the lowest temperature. As explained in section
3.1, the viscoelastic layer acts as another boundary condition and prevents movement.
Concerning energy dissipation, both the stiffness and loss factor of the highest temperature
is too low compared to those of the lowest temperature.
The importance of a proper storage modulus can be exemplified on basis of temperatures
T = −20 ◦C and T = 30 ◦C. Although the loss factor is explicitly higher for T = −20 ◦C
in Figure 11 (b), the damping ratios for modes 2-4 are marginal compared to those of
T = 30 ◦C in Figure 10. However, the storage moduli for T = 30 ◦C are much smaller
than for T = −20 ◦C, as apparent in Figure 11 (a). From that fact it can be drawn, that
not only the loss factor, but also a proper storage modulus is decisive for high damping
values.

5. CONCLUSIONS

In this paper, the modelling of viscoelastic material in frequency domain has been
presented. Using the WLF and Arrhenius approaches, viscoelastic damping properties



are described additionally in terms of frequency and temperature dependent storage
modulus and loss factor. The modelling is fully consistent and compatible with finite
element modelling and allows for local damping modelling.
Furthermore, a novel concept of local CLD treatment has been introduced and analysed
by a parameter study with virtual material properties. The influence of a damping patch
position as well as the influence of storage modulus and loss factor on the modal loss
factor have been examined. A rule of thumb has been derived, giving the designer advice,
where to place a damping patch in a structure. The advantages of the local CLD treatment
compared to full coverage FLD and CLD treatments have been outlined.
Finally, an application using a real existing viscoelastic material named bromobutyl
has been presented and the impact on damping in terms of shear storage modulus and
loss factor has been quantified. The significant property changes due to frequency and
temperature variation have been illustrated and their influence on the local CLD treatment
has been investigated. It was shown, that the damping capability varies considerably
under different excitation frequencies and temperature levels. However, it was outlined,
that not only a high loss factor is decisive for obtaining high damping values. Instead, an
appropriate adjustment of both geometrical and material properties needs to be carried
out.
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