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ABSTRACT 
Acoustic black hole (ABH) is a thin wedge-shaped structure whose thickness profile 
is tapered according to the power-law with power greater than or equal to two. Due 
to its geometry, the ABH slows down the group speed of incident flexural waves, 
thereby focusing the wave energy on its tip. Recently, a new design of the ABH with 
baseline in curvilinear shape was proposed in order to enhance the space efficiency 
while maintaining the wave attenuation performance. By means of numerical 
simulations, it was shown that the damping performance of the ABH was 
maintained above a certain critical frequency, the ‘cut-off frequency’. Although the 
proposed curvilinear ABH is a compact and effective solution to vibration damping 
in thin beams and plates, it is important to avoid using the curvilinear ABH below 
the cut-off frequency since the damping performance of the curvilinear ABH is not 
the same as that of the straight conventional ABH. In this study, by modeling the 
wave motion within the curvilinear ABH mathematically, we investigate the cut-off 
frequency for curvilinear ABHs. Specifically, we investigate the effect of geometrical 
parameters on the cut-off frequency for the arc ABHs and the spiral ABHs. This 
study ultimately aims at designing space-efficient curvilinear ABHs suitable for 
various industrial applications. 
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1. INTRODUCTION 
 
Effective attenuation of structural vibration in thin structures such as plates or 

beams by using lightweight techniques is an important consideration in designing a 
system. A decade ago, a passive technique to dampen the vibration of the thin structures 
named Acoustic Black Hole (ABH) was established [1,2], and many researchers have 
been actively investigating the ABH to apply its remarkable feature to practice [3-6]. 
Basically, the ABH is a thin structure with thickness tailored in the form of the power-
law function of power greater than or equal to two whose tip region is covered with a 
viscoelastic damping layer. Due to the combined effect of the wedge of power-law profile 
and the damping layer, the ABH effectively attenuates the vibration energy within the 
thin structure by slowing and absorbing the flexural waves incident upon it.  

Although the vibration attenuation performance of the ABH can be enhanced by 
increasing its length, [2] the space available for the ABH is limited in most applications, 
which makes it less practical to use the ABH with a long length. To resolve this, revently, 
Lee and Jeon [7,8] proposed a new design of the ABH with its baseline curved in 
Archimedean spiral shape to attenuate the flexural vibration in beams compactly. By 
means of computational simulations, they showed that it is possible to effectively 
attenuate the structural vibrations in beams using the compact spiral ABH. To understand 
this remarkable and non-intuitive feature of the curvilinear ABH, they also investigated 
the frequency response functions of ABHs with baselines in circular arc shape, which 
have constant curvatures. It was shown that above a certain critical frequency, the ‘cut-
off frequency’, the frequency and magnitude of the frequency reponse functions are not 
severely changed even though their shapes are distinct from each other.  

In our ongoing research, we attempt to investigate the extraordinary features of 
the curvilinear ABH such as the ‘cut-off frequency’ of the circular arc ABH analytically. 
For the investigation, a mathematical model of wave motion in elastic structures with 
varying thickness and arbitrary curvature is required. In this paper, the mathematical 
model is proposed and verified with computational simulations.  

 
2.  MATHEMATICAL MODEL OF WAVE MOTION IN CURVILINEAR ABH 

 
In this section, the governing equation that governs the elastic waves in curvilinear 

ABH is established mathematically. The underlying assumptions and the form of the 
derived governing equations are given without detailed mathematical procedures for the 
sake of brevity.  

We consider a thin elastic structure whose thickness and curvatrue vary along its 
curved centerline, denoted as s-axis. To derive the governing equation for the thin 
structure, we employ the Kirchhoff’s hypothesis and the linear elastic Hooke’s law as 
constitutive law. The Kirchhoff hypothesis  is an assumption which states that the cross-
section perpendicular to the neutral surface of a thin elastic structure remains 
perpendicular to the surface even in the process of deformation.  

We derive the explicit expression for the kinetic and potential energies for a small 
volume of the thin structure with respect to the displacements for the centerline: 
transverse normal displacement w and the longitudinal tangential displacement u. The 
governing equations can then be obtained through Hamilton’s principle. Derived 
equations are written in Equations (1) and (2): 
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Here, 𝐸𝐸 is the Young’s modulus, 𝜌𝜌 is the volume density of mass, and 𝜔𝜔 is the angular 
frequency. R denotes the radius of curvature, 𝐴𝐴 denotes the cross-sectional area and C is 
a non-dimensional constant which is a function of the ration between the thickness and 
the radius of curvature.  

The derived equations are coupled ordinary differential equations with 4th order 
in terms of w and 2nd order in terms of u. The equation is suitable for studying the wave 
behavior in the curvilinear ABH since A and R are inside the differential operators. Also, 
note that the normal motion w is coupled with the tangential motion u. This implies that 
the flexural motion inside the curvilinear ABH is closely coupled with the longitudinal 
motion due to the presence of the curvature.  
 
3.  MODEL VERIFICATION VIA FINITE ELEMENT SIMULATION 
 
 In this section, we verify the model presented in Section 2 by comparing the 
frequency response function obtained from the mathematical model with that from a 
numerical simulation.  

The commercial finite element software COMSOL Multiphysics 5.2a was used as 
the tool for the comparison. The governing equation for the numerical simulation is the 
two-dimensional Navier’s equation for linear elastic solids. Since the structure under 
consideration is assumed to be thin, the plane stress assumption was employed. The size 
of the elements were made sufficiently small compared to the wavelength at the location 
especially near the tip region of the ABH.  

Figure 1 (a) shows the schematic of the curvilinear ABH that was used in the 
comparison. Important geometrical dimensions for the curvilinear ABH such as the 
thickness profile ℎ(𝑠𝑠)  and the arc length 𝐿𝐿  are written in Figure 1 (a) as well. Free 
boundary conditions were imposed on all the edges of the structure, and a harmonic point 
force was applied at the mid-point of the attached beam. The driving point mobility of the 
curvilinear ABH with the beam is shown in Figure 1 (b) for the theoretical model (blue 
solid line) and the finite element simulation result (black dashed line).  

 
Figure 1: (a) Schematic of the circular arc ABH with curvature as 8.41 m-1. (b) Comparison between the 
results of the mathematical model presented in Section 2 and the two-dimensional numerical simulation. 

 
 
 



 As shown in Figure 1 (b), both the magnitude and the frequency of the peaks in 
the frequency response function obtained from the theoretical model are in good 
agreement with the that obtained from a two-dimensional finite element simulation up to 
6000 Hz.  
 
4.  CONCLUSIONS 

The concept of the curvilinear ABH was proposed in a recent paper by Lee and 
Jeon. To utilize the extraordinary features of compact and effective vibration absorber, a 
systematic approach should be established in order to design the compact curvilinear 
ABH suitable for various applications. The cut-off frequency of the circular arc ABH 
could be one important measure in designing the curvilinear ABH. In doing so, a 
mathematical model that describes the wave motion in elastic structures with varying 
thickness and arbitrary curvature with accuracy should be fomulated. In this coference 
proceeding, the mathematical model was derived and was verified via computational 
simulation result for a circular arc ABH. 
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