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ABSTRACT

Conventional beamforming is one of the standard methods for localization
and quantification of aeroacoustic sources in wind tunnel testing. It offers a
robust indicator for the sound source distribution. The conventional beamformer
minimizes the deviation between the synthetic and measured cross correlation
matrix with respect to the Frobenius norm. This approach imposes the assumption
that the measured cross correlations are superposed with uncorrelated white noise.
In real-life applications this idealized noise model is often violated. We consider
a slightly relaxed noise model where the noise is still uncorrelated but non-white.
Assuming non-white noise we end up with a modified beamformer that minimizes
the deviation with respect to a weighted Frobenius norm. The application of this
approach on experimental data of a wind tunnel test shows that the resolution
and dynamic range of the source maps can be enhanced compared to conventional
beamforming.
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1. INTRODUCTION

Beamforming methods are well established for the treatment of aeroacoustic source
problems like jet noise [1] or model testing in closed wind tunnels [2]. They offer a fast
and robust way to obtain an estimator of the source power distribution of aeroacoustic
sources.

For a discrete set of microphones/sensors at positions {x1, . . . ,xM} we record
sound pressure signals p(xm, t). Since the pressure signal is a stochastic quantity we can
only estimate the cross correlation of each sensor pairing. This process is usually done in
the frequency domain and yields the Cross Spectral Matrix (CSM) with entries

Cml(ω) = E [p̂(xm, ω)p̂(xl, ω)
∗] m, l = 1, . . . ,M . (1)
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The hat denotes the Fourier transform of the sound signal, ω is the angular frequency and
the star denotes the complex conjugation. In practice the expectation operator is carried
out by sample averaging.

Given the array data (cross correlations in our case) we aim to localize and quantify the
sound power of the unknown source term in a region of interest Y ⊂ R3. For each focus
point y ∈ Y an estimator of the source power is computed independently of the other
focus points.

2. BEAMFORMING METHODS

2.1 Sound Propagation

Neglecting the geometry of the wind tunnel test section and assuming a constant flow
field u = (u1, u2, u3)

T the sound propagation in frequency domain is modelled by the
free field convective Helmholtz equation
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with a source term q, the speed of sound c and wavenumber k = ω
c
. The Green’s function

g(x,y, ω) is the solution of Equation 2 with a Dirac source term at position y i.e. q =
δ(x− y). Using the Mach vector v = 1
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For any y ∈ Y we define the steering vector

g(y, ω) =

 g(x1,y, ω)
...

g(xM ,y, ω)

 ∈ CM (4)

and the corresponding steering matrix

G(y, ω) = g(y, ω)g(y, ω)∗ . (5)

2.2 Conventional Beamforming

We will start our investigation of the beamforming process with its characterization
as a minimization problem according to Sijtsma [3] and adapt the notation of this
reference.
Let S ⊂ {1, . . . ,M}2 be a symmetric subset of index pairs, which indicates the
correlation measurements that are taken into account for the imaging method. We
set Cml and Gml to zero for (m, l) /∈ S. Again, the resulting matricies will be
denoted by C resp. G. Often, we neglect autocorrelations of the microphones
i.e. S = {(m, l) ∈ {1, . . . ,M}2 : m 6= l}, because the noise level of the
autocorrelation measurements is significantly higher than the noise level of cross
correlation measurements.



The conventional beamformer is defined as

bcbf(y, ω) = argmin
µ≥0
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Explicitly solving Equation 6 without the positivity constraint yields the minimizer
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and hence the conventional beamformer can be represented by

bcbf(y, ω) = max
(
0, µcbf(y, ω)

)
. (8)

2.3 Inverse Variance Beamforming

As presented in Equation 1, the CSM can be considered as the expectation of a
stochastic quantity. In the experiment we approximate this expectation value by a sample
average. The conventional beamforming minimization problem (Equation 6) assumes
that the mean square error is constant for all considered CSM entries i.e. ∃σ2 > 0 s.t.

E
[∣∣p̂(xm, ω)p̂(xl, ω)∗ −Cml

∣∣2] = σ2 ∀(m, l) ∈ S . (9)

In the following we will relax this white noise model assumption and assume that the
variances of the CSM entries may vary

σ2
ml = E

[∣∣p̂(xm, ω)p̂(xl, ω)∗ −Cml

∣∣2] (m, l) ∈ S , (10)

which corresponds to a noise model with uncorrelated but not necessarily white noise.
The variance values σ2

ml can be estimated by sample variances of the recorded data.

Any symmetric matrix W ∈ RM×M with positive entries Wml > 0 ,∀m, l = 1, . . . ,M
defines a scalar product on CM×M by
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∗
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with the induced norm
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The idea of inverse variance beamforming is to solve the minimization problem in
Equation 6 with respect to a weighted Frobenius norm with the following choice for the
weighting matrix

Wml =
1

σ2
ml

. (13)



Hence we obtain the inverse variance beamformer by

bivbf(y, ω) = argmin
µ≥0
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Analogously to Equation 7 we define the unconstrained minimizer
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Thus, the inverse variance beamformer is represented by

bivbf(y, ω) = max
(
0, µivbf(y, ω)

)
. (16)

The main additional effort of inverse variance beamforming compared to conventional
beamforming is the computation of the sample variances. Once the variances of the cross
correlations are stored, the computational effort increases only by a maximum factor of 2.

3. RESULTS

In this section we will investigate how the inverse variance weighting affects the
beamforming result. The experimental wind tunnel data is taken from a benchmark
measurement at the cryogenic wind tunnel in Cologne (DNW-KKK) [4], [5]. The
benchmark test considers a scaled DO-728 half-model for different Mach numbers (0.15,
0.2, 0.25) and angles of attack (3◦, 5◦, 9◦).

In the following subsections we compare the results of inverse variance beamforming
with conventional beamforming, where we will focus on the following aspects: dynamic
range/resultion of source maps, structure of the weighted CSM and robustness. All
evaluations neglect autocorrelation measurements i.e. only off-diagonal CSM entries are
considered.

3.1 Dynamic Range and Resolution

For narrowband source maps the inverse variance beamformer can improve the
separation of sources. Figure 1 shows this effect for three frequencies between 3 and 4
kHz. For the inverse variance beamforming maps the peaks of each source are sharper
than for the conventional beamforming maps. This enables the beamformer to identify
and separate more sources from each other.

For third octave source maps we observe an improved dynamic range of the resulting
source map when inverse variance beamforming is applied. The sound pressure level in
regions apart from the model is much lower for the inverse variance beamformer.

For source regions with a lower SPL than the maximum SPL the inverse variance
beamformer produces results with a slightly lower magnitude than the conventional
beamformer. This damping effect increases as the difference of global and local
maximum increases.



Figure 1: Narrowband source maps for conventional beamforming (upper) and inverse
variance beamforming (lower). Dynamic range: 10 dB.

Figure 2: Third-octave band source maps for conventional beamforming (upper) and
inverse variance beamforming (lower). Dynamic range: 20 dB.



3.2 Weighted Cross Spectral Matrix

Figure 3 shows a scatter plot of the normalized and weighted off-diagonal CSM entries
at 3 and 8 kHz. There is a mild negative correlation between distance and weighted CSM
entry for 3 kHz (Pearson correlation coefficient −0.057) which becomes stronger for 8
kHz (Pearson correlation coefficient −0.23).

In open test sections the turbulent shear layer induces a coherence loss between
the sensor signals, which increases with the frequency and the distance [6]. As we
consider a closed test section dataset, the observed damping effect may be induced by
the turbulent boundary layer [7] since we observe similar scaling properties as for the
coherence loss in open test sections.

Figure 3: Normalized weighted CSM entries for 3 kHz (left) and 8 kHz (right).

3.3 Robustness

If a defect sensor produces an almost zero signal the corresponding cross correlations
vary much less than cross correlations between correctly working sensors. Hence the
variances are very low and Equation 15 indicates that cross correlations including the
defect sensor get an extremely high weighting factor compared to correctly measured
cross correlations. This issue makes inverse variance beamforming more sensitive to
degenerated sensor signals. Conventional beamforming is known to be more robust
against degenerated sensor signals (if the number of defect sensors is small). The full
measurement data from the benchmark dataset includes a defect sensor whose effect on
the source map will be investigated here.

The lack of robustness for inverse variance beamforming is illustrated in Figure 4.
The defect sensor has almost no effect on the resulting source map for conventional
beamforming whereas the source map for inverse variance beamforming is strongly
corrupted by the degenerated sensor signal. This effect results from the extremely low
variances of correlation measurements including the defect sensor. The degenerated
variances are up to three orders of magnitude lower than the non degenerated ones.
Removing the defect sensor from the measurement data yields a much cleaner source
map for the inverse variance beamformer and the order of magnitude of the maximum
SPL are now the same for both methods.



Figure 4: Illustration of robustness: conventional beamforming (upper) and inverse
variance beamforming (lower) for measurement data including a defect sensor (left) and
without defect sensor (right) .

4. CONCLUSIONS

For many aeroacoustic array imaging methods only the expected value of cross
correlations is taken into account. The presented results clearly show that one can benefit
from additional statistical properties (like variances) of the measurement data.

In order to guarantee a robust method, the sample variances need to be checked
for outliers. For further data processing only the non degenerated variances should be
taken into account.

The resulting source maps for the benchmark dataset show that the inverse variance
beamformer is able to improve the resolution as well as the dynamic range. The inverse
variance weighting adapts the priority of fitting a specific CSM entry. Measurements
with a higher variance are considered to be less reliable and get a lower weight in the
minimization target function than entries with a lower variance. The measured sample
variances show that their magnitudes indeed vary strongly and thus indicate that a white
noise model may be too restrictive.



The noise model of the inverse variance beamformer can be extended to correlated
noise which would incorporate covariances of two CSM entries. The idea of statistical
distance measures is also applicable for full inverse methods, where we solve for all
focus points at once. The inverse variance weighting principle can be straightforward
included in deconvolution schemes like DAMAS [8].
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