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ABSTRACT 

In the structure composed of frames and panels, the panels often have lighter mass 

density and rigidity than frames and are easily excited from the frame side. The 

vibration of a panel causes acoustic radiation because its surface area is large. Hence 

it is important to evaluate vibration from the initial design stage to prevent large 

vibration. In this study, attention is paid to the wave number vector that causes an 

eigenmode of a panel structure. It is known that there is a strong relationship 

between the wave number vector and eigenmode formation. In this paper, we 

address a vibration reduction method of a panel structure which controls a modal 

group having the same direction of the wave number vector. As a numerical example, 

we confirmed that the proposed method can control a modal group having the same 

direction of wave number vector and can reduce the vibration of a panel structure 

efficiently. 
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1. INTRODUCTION 

In the field of vibration and noise in the automotive field, vibration reduction design 

at mid frequency is an important technical issue. The middle frequency is a band of 250 

to 500 Hz, which frequency band is difficult to design for vibration reduction. This is 

because modal density is too high for modal analysis and is too low in SEA (Statistical 

Energy Analysis). In other words, middle frequency has a complex problem of both low 

frequency and high frequency. As another vibration analysis method, there is a method 

using wave analysis. Waves are fundamental to cause vibration. Therefore, there is a 

possibility to understand the vibration mechanism by the viewpoint of wave. 

There have been many studies in two-dimensional panels using wave analysis. The 

representative one is the Image Source Method [1, 2]. By using the Image Source Method, 

it is possible to identify the wave path and reflection boundary which contribute greatly 

to the response of the evaluation point. However, when the number of reflections in the 

system is large, there are difficulties in the analysis. 

This paper shows an analytical method using wave number vector and shows how to 

devise structural modification for vibration reduction. The proposed method can be 

applied from low frequency to relatively high frequency. Firstly, as an introduction, it is 

shown that the vibration mode of thin plates have specific angles of wave number vectors 

[3]. Secondly, phase closure principle is applied to the waves of specific angles to reduce 

vibration of thin plates. Finally, this research proposes a method to devise structural 

modification for vibration reduction using phase closure principle. A specific example 

simulates a panel supported by a frame. To clarify the relation with the theory here, the 

model of the FEM is a rectangular plate that simply supports. When focusing on the target 

vibration mode, it was confirmed that ERP(Equivalent Radiated Power) [4] at that 

frequency can be reduced. 

 

2. PPLICATION OF THE PHASE CLOSURE PRINCIPLE IN TWO 

DIMENSIONAL PANELS 

 

2.1 Eigen modes of a simple supported rectangular plate 

The vibration characteristics of a two-dimensional panel are approximated by using 

the wave equation according to Kirchhoff's assumption [3]. The wave equation of a 

microelement when the bending displacement of the panel spreading on the plane is 

expressed by 𝑤 (𝑥, y, 𝑡) as follows, 

 

𝜌ℎ
𝜕2𝑤

𝜕𝑡2
+ 𝐷 (

𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+
𝜕4𝑤

𝜕𝑦4
) = 0, (1) 

 

where, 𝜌 is density and ℎ is plate thickness. 𝐷 represents flexural rigidity of the plate can 

be written as 

 

    𝐷 =
𝐸ℎ3

12(1 − 𝜈2)
, (2) 

 

where E is Young’s modulus and ν is Poisson's ratio. As shown in Fig. 1, for a plate 

simply supported on all the sides, the boundary conditions to be satisfied are 

 



      

{
 
 

 
 𝑢 = 0,    𝐸𝐼

𝜕2𝑢

𝜕𝑥2
= 0  (𝑥 = 0,  𝐿𝑥) 

𝑢 = 0,    𝐸𝐼
𝜕2𝑢

𝜕𝑦2
= 0  (𝑦 = 0,  𝐿𝑦).

 (3) 

 

In this condition, the state of the phase is given by phase closure principle in the x 

direction and y direction respectively can be written as 

 

𝑘𝑥𝐿𝑥 = 𝑛𝜋      (𝑛 = 1, 2,⋯ )  
𝑘𝑦𝐿𝑦 = 𝑚𝜋     (𝑚 = 1, 2,⋯ ), 

(4) 

 

where 𝐿𝑥 and 𝐿𝑦 represent the length of the side in each direction, and 𝑘𝑥 and 𝑘𝑦 

represent wave numbers in the respective directions. The natural frequency in this case 

is 

 

𝜔𝑛𝑚 = 𝜋2 (
𝑛2

𝐿𝑥
2 +

𝑚2

𝐿𝑦
2)√

𝐷

𝜌ℎ
  (𝑛,𝑚 = 1, 2,⋯ ). (5) 

 

The case of a plate simply supported on all edges is mode shape easily obtainable. Figure 

1 shows m, n modes that is the mode shape existing in the plate.  

 

 
 

Figure 1 Normal mode of the simply supported plate 

 

2.2 Wavenumber at eigen modes of a simple supported rectangular plate 

In simply supported on all edges, the eigen modes are described by 𝜔𝑚𝑛. Then the 

general solution of Eq. 1 is 
 

  𝑊𝑚𝑛(𝑥, 𝑦, 𝑡) = 𝑤𝑚𝑛(𝑥, 𝑦)𝑒
𝑗𝜔𝑚𝑛𝑡. (6) 

 

Substituting Eq. 6 into the wave equation of Eq. 1 gives 

 

𝜌ℎ(𝑗𝜔𝑚𝑛)
2𝑤𝑚𝑛 + 𝐷 (

𝜕4𝑤𝑚𝑛
𝜕𝑥4

+ 2
𝜕4𝑤𝑚𝑛
𝜕𝑥2𝜕𝑦2

+
𝜕4𝑤𝑚𝑛
𝜕𝑦4

) = 0, (7) 

  

where, 𝑤𝑚𝑛(𝑥, 𝑦) in Eq. 6 is a function of position, and since the wave is a periodic 

function, it can be rewritten as 𝑤𝑚𝑛(𝑥, 𝑦) = sin 𝑘𝑥 𝑥 sin 𝑘𝑦𝑦. Here 𝑘𝑥 and 𝑘𝑦 are wave 



numbers of waves propagating in the x and y directions, respectively. Substituting Eq. 6 

into Eq.7 gives 

 

  𝜌ℎ(𝑗𝜔𝑚𝑛)
2 +  𝐷(𝑘𝑥

4 + 2𝑘𝑥
2𝑘𝑦

2 + 𝑘𝑦
4) = 0. (8) 

 

Solving for 𝑘𝑥 and 𝑘𝑦, the relationship between wavenumber and frequency 𝜔𝑚𝑛 is 

 

√𝑘𝑥
2 + 𝑘𝑦

2 = √
𝜌ℎ

𝐷

4

√𝜔𝑚𝑛 .                                (9) 

 

Generally, the wave number of the thin plate is 

 

  𝑘 = √
𝜌ℎ

𝐷

4

√𝜔. (10) 

 

By comparing Eq. 9 and Eq. 10, it can say that wavenumber is a combination of 

wavenumbers in the x and y directions. 

 

2.3 Relationship between eigen modes and wavenumber vectors 

The wave number when satisfying the condition of Eq. 5 is defined as 𝑘𝑥𝑦. At this 

condition, using Eq. 5, 9 and 10, 𝑘𝑥𝑦 gives 

 

𝑘𝑥𝑦 = √𝑘𝑥
2 + 𝑘𝑦

2 = √(
𝑛𝜋

𝐿𝑥
)
2

+ (
𝑚𝜋

𝐿𝑦
)

2

 .    (11) 

 

On the other hand, the angle of the wavenumber vectors are 

 

tan−1 𝜃 =
𝑘𝑦

𝑘𝑥
=
𝑚𝐿𝑥
𝑛𝐿𝑦

 . (12) 

 

The above equation is shown in the schematic diagram, the relationship between the 

wavenumber vector in each direction and its angle can be considered as shown in Fig. 2. 

 

 
 

Figure 2 Relationship between eigenmode and wave vector 

 



2.4 Reflection phase of waves at boundary conditions 

The phase change when reflected by the boundary differs depending on the boundary 

conditions. Figure 3 shows a schematic diagram of the wave reflection at the simple 

support boundary. The reflection coefficient is defined as the ratio of the amplitude of the 

reflected wave to the incident wave. Also, the complex number represents the phase angle. 

𝑟𝑃𝑃 is the bending wave and 𝑟𝑃𝑁 is the reflection coefficient of the evanescent waves as 

follows, 

 

{
𝑟𝑃𝑃 =

𝑏

𝑎
     

𝑟𝑃𝑁 =
𝑏𝑁
𝑎
 ,

 

 

(13) 

 

where, a is incident wave, b is reflected wave and 𝑏𝑁 is the evanescent wave generated 

by the reflection of the incident wave. As the general solution of the wave equation, 

applying W(𝑥, 0, t) = ∂2𝑊(𝑥, 0, 𝑡)/ ∂𝑥2 from the simple support boundary condition, 

the reflection coefficients 𝑟𝑃𝑃 and 𝑟𝑃𝑁 are obtained as follows 

 

 

{

𝑏

𝑎
= −1 = 𝑟𝑃𝑃               

𝑏𝑁
𝑎
= 0 = 𝑟𝑃𝑁 .      

 (14) 

 

As a result, the reflection phase angle of the bending wave is π in simple support boundary, 

meaning that the evanescent wave does not exist as a reflected wave. 

 

 
 

Figure 3 Relationship of wave reflection 

 

2.5 Phase closure principle 

Phase closure principle [5, 6] is to describe the phase of the wave reflected at the 

boundary by an equation. And this equation clarifies the overlap of waves propagating in 

the same direction at the same position. The condition of resonance and cancellation of 

the calculated phase is as follows, 

 

  2𝑘𝐿 + 𝜙𝐿 + 𝜙𝑅 = {
 2(𝑑 + 1)𝜋     (𝑑 = 1,  2,⋯ ) , Resonance
   (2𝑑 + 1)𝜋     (𝑑 = 1,  2,⋯ ) , Cancellation.

 (15) 

 



where, L is the distance between the boundaries, 𝜙𝐿 is the reflection phase of the left 

boundary, and 𝜙𝑅 is the reflection phase of the right boundary. In case of simple 

support, 𝜙𝐿 and 𝜙𝑅 are π as shown in the previous section. 

 

3. VIBRATION REDUCTION DESIGN USING THE PHASE CLOSURE 

PRINCIPLE 

 

3.1 Proposal of structural change 

Section 2.3 show that the wave vectors of normal modes having n and m antinodes in 

the x and y directions can be calculated. Creating the cancellation condition shown in Eq. 

15 for these wavenumber vectors. For example, as shown (b) in the Fig. 4, boundaries are 

set perpendicular to the direction of the wavenumber vector so that the waveguide of 

distance L satisfies the cancellation condition of Eq. 15. It can be considered that within 

these boundaries, the phase closure principle is satisfied, and the vibration response is 

reduced. 

 

3.2 Confirmation of validity of structure change 

Evaluate ERP(Equivalent Radiated Power) [4] when structure is modified for vibration 

reduction by frequency response analysis by finite element method. The object model is 

a thin steel material of 530 × 500 × 1 mm as shown in Fig. 4, and specifications are shown 

in Table 1. Modify the structure as shown in (a) and (b) in Fig. 4. Structural changes are 

four parts in the middle of boundary. The target modes for vibration reduction are 4 × 4, 

6 × 6, and 8 × 8 mode shapes. Based on the idea of phase closure principle, (b) in Fig. 4 

has waveguides of L=320 mm in length parallel to the wavenumber vector direction. The 

angle is determined by Eq. 12 and cancellation phase is determined by Eq. 15. This 

boundary is intended to cancel the wave that forms the mode shapes of target. 

 
(a) Initial model                               (b) Modified model 

Figure 4 Structural modification 

 

Table 1 Conditions of FEA 

Number of shell elements 

Initial 

model 
17555 

Modified 

model 
17320 

Number of nodes 
Initial 

model   
17508 



Modified 

model 
17309 

Solver Altair HyperWorks (OptiStruct) 

Analysis type 
Frequency Response (Modal)  

and Normal Modal 

Structural damping 

coefficient 
0.001 

𝐿𝑥 530 mm 

𝐿𝑦 500 mm 

𝐿𝑥𝑦 320 mm 

𝜃 43.3° 

 

3.2 Analysis result 

Figure 5 shows the respective mode shapes in normal modal analysis. For comparison, 

Initial model and Modified model are arranged in 4 × 4, 6 × 6, and 8 × 8 mode shapes. 

Comparing before and after the modified, it can be confirmed from the contour diagram 

that the response between the structural changed boundary in the panel is lower than the 

surroundings. This tendency can be expected to be similarly low in response to frequency 

response analysis. 

Finally, Fig. 6 compares the ERP(Equivalent Radiated Power) of the whole panel 

obtained by frequency response analysis in respective normal modes. Since the frequency 

of the corresponding mode changes before and after the structural change, comparison 

was made by tracing the same mode shape. Changes are indicated by arrows in the graph 

in Fig. 6. As a result, it can be confirmed that the ERP is reduced by two dB or more in 

the target modes. These indicate that operation is possible as a mode group, and the 

effectiveness of the proposed method was confirmed. 

 

mode Initial model Modified model 

4 × 4 

 
297 Hz 

 
301Hz 

6 × 6 

 
669 Hz 

 
678 Hz 

8 × 8 

 
1192 Hz 

 
1204 Hz 

 

Figure 5 Mode shape in Normal Modal 



 

 
 

Figure 6 ERP of the entire panel before and after structural modification 

 

4. CONCLUSIONS 

The normal modes in the two-dimensional panel can be associated with the wave 

vector direction, indicating that normal modes can be operated as a group by changing 

the structure focusing on the wave vector. With this method, the vibrational response can 

be reduced in the vibration of a panel structure efficiently. 
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